Metamath Proof Explorer


Theorem serge0

Description: A finite sum of nonnegative terms is nonnegative. (Contributed by Mario Carneiro, 8-Feb-2014) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses serge0.1 φ N M
serge0.2 φ k M N F k
serge0.3 φ k M N 0 F k
Assertion serge0 φ 0 seq M + F N

Proof

Step Hyp Ref Expression
1 serge0.1 φ N M
2 serge0.2 φ k M N F k
3 serge0.3 φ k M N 0 F k
4 breq2 x = F k 0 x 0 F k
5 4 2 3 elrabd φ k M N F k x | 0 x
6 breq2 x = k 0 x 0 k
7 6 elrab k x | 0 x k 0 k
8 breq2 x = y 0 x 0 y
9 8 elrab y x | 0 x y 0 y
10 breq2 x = k + y 0 x 0 k + y
11 readdcl k y k + y
12 11 ad2ant2r k 0 k y 0 y k + y
13 addge0 k y 0 k 0 y 0 k + y
14 13 an4s k 0 k y 0 y 0 k + y
15 10 12 14 elrabd k 0 k y 0 y k + y x | 0 x
16 7 9 15 syl2anb k x | 0 x y x | 0 x k + y x | 0 x
17 16 adantl φ k x | 0 x y x | 0 x k + y x | 0 x
18 1 5 17 seqcl φ seq M + F N x | 0 x
19 breq2 x = seq M + F N 0 x 0 seq M + F N
20 19 elrab seq M + F N x | 0 x seq M + F N 0 seq M + F N
21 20 simprbi seq M + F N x | 0 x 0 seq M + F N
22 18 21 syl φ 0 seq M + F N