Metamath Proof Explorer


Theorem serle

Description: Comparison of partial sums of two infinite series of reals. (Contributed by NM, 27-Dec-2005) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses serge0.1 φ N M
serge0.2 φ k M N F k
serle.3 φ k M N G k
serle.4 φ k M N F k G k
Assertion serle φ seq M + F N seq M + G N

Proof

Step Hyp Ref Expression
1 serge0.1 φ N M
2 serge0.2 φ k M N F k
3 serle.3 φ k M N G k
4 serle.4 φ k M N F k G k
5 fveq2 x = k G x = G k
6 fveq2 x = k F x = F k
7 5 6 oveq12d x = k G x F x = G k F k
8 eqid x V G x F x = x V G x F x
9 ovex G k F k V
10 7 8 9 fvmpt k V x V G x F x k = G k F k
11 10 elv x V G x F x k = G k F k
12 3 2 resubcld φ k M N G k F k
13 11 12 eqeltrid φ k M N x V G x F x k
14 3 2 subge0d φ k M N 0 G k F k F k G k
15 4 14 mpbird φ k M N 0 G k F k
16 15 11 breqtrrdi φ k M N 0 x V G x F x k
17 1 13 16 serge0 φ 0 seq M + x V G x F x N
18 3 recnd φ k M N G k
19 2 recnd φ k M N F k
20 11 a1i φ k M N x V G x F x k = G k F k
21 1 18 19 20 sersub φ seq M + x V G x F x N = seq M + G N seq M + F N
22 17 21 breqtrd φ 0 seq M + G N seq M + F N
23 readdcl k x k + x
24 23 adantl φ k x k + x
25 1 3 24 seqcl φ seq M + G N
26 1 2 24 seqcl φ seq M + F N
27 25 26 subge0d φ 0 seq M + G N seq M + F N seq M + F N seq M + G N
28 22 27 mpbid φ seq M + F N seq M + G N