Metamath Proof Explorer


Theorem sermono

Description: The partial sums in an infinite series of positive terms form a monotonic sequence. (Contributed by NM, 17-Mar-2005) (Revised by Mario Carneiro, 30-Jun-2013)

Ref Expression
Hypotheses sermono.1 φ K M
sermono.2 φ N K
sermono.3 φ x M N F x
sermono.4 φ x K + 1 N 0 F x
Assertion sermono φ seq M + F K seq M + F N

Proof

Step Hyp Ref Expression
1 sermono.1 φ K M
2 sermono.2 φ N K
3 sermono.3 φ x M N F x
4 sermono.4 φ x K + 1 N 0 F x
5 elfzuz k K N k K
6 uztrn k K K M k M
7 5 1 6 syl2anr φ k K N k M
8 elfzuz3 k K N N k
9 8 adantl φ k K N N k
10 fzss2 N k M k M N
11 9 10 syl φ k K N M k M N
12 11 sselda φ k K N x M k x M N
13 3 adantlr φ k K N x M N F x
14 12 13 syldan φ k K N x M k F x
15 readdcl x y x + y
16 15 adantl φ k K N x y x + y
17 7 14 16 seqcl φ k K N seq M + F k
18 fveq2 x = k + 1 F x = F k + 1
19 18 breq2d x = k + 1 0 F x 0 F k + 1
20 4 ralrimiva φ x K + 1 N 0 F x
21 20 adantr φ k K N 1 x K + 1 N 0 F x
22 simpr φ k K N 1 k K N 1
23 1 adantr φ k K N 1 K M
24 eluzelz K M K
25 23 24 syl φ k K N 1 K
26 2 adantr φ k K N 1 N K
27 eluzelz N K N
28 26 27 syl φ k K N 1 N
29 peano2zm N N 1
30 28 29 syl φ k K N 1 N 1
31 elfzelz k K N 1 k
32 31 adantl φ k K N 1 k
33 1zzd φ k K N 1 1
34 fzaddel K N 1 k 1 k K N 1 k + 1 K + 1 N - 1 + 1
35 25 30 32 33 34 syl22anc φ k K N 1 k K N 1 k + 1 K + 1 N - 1 + 1
36 22 35 mpbid φ k K N 1 k + 1 K + 1 N - 1 + 1
37 zcn N N
38 ax-1cn 1
39 npcan N 1 N - 1 + 1 = N
40 37 38 39 sylancl N N - 1 + 1 = N
41 28 40 syl φ k K N 1 N - 1 + 1 = N
42 41 oveq2d φ k K N 1 K + 1 N - 1 + 1 = K + 1 N
43 36 42 eleqtrd φ k K N 1 k + 1 K + 1 N
44 19 21 43 rspcdva φ k K N 1 0 F k + 1
45 fzelp1 k K N 1 k K N - 1 + 1
46 45 adantl φ k K N 1 k K N - 1 + 1
47 41 oveq2d φ k K N 1 K N - 1 + 1 = K N
48 46 47 eleqtrd φ k K N 1 k K N
49 48 17 syldan φ k K N 1 seq M + F k
50 18 eleq1d x = k + 1 F x F k + 1
51 3 ralrimiva φ x M N F x
52 51 adantr φ k K N 1 x M N F x
53 fzss1 K M K N M N
54 23 53 syl φ k K N 1 K N M N
55 fzp1elp1 k K N 1 k + 1 K N - 1 + 1
56 55 adantl φ k K N 1 k + 1 K N - 1 + 1
57 56 47 eleqtrd φ k K N 1 k + 1 K N
58 54 57 sseldd φ k K N 1 k + 1 M N
59 50 52 58 rspcdva φ k K N 1 F k + 1
60 49 59 addge01d φ k K N 1 0 F k + 1 seq M + F k seq M + F k + F k + 1
61 44 60 mpbid φ k K N 1 seq M + F k seq M + F k + F k + 1
62 48 7 syldan φ k K N 1 k M
63 seqp1 k M seq M + F k + 1 = seq M + F k + F k + 1
64 62 63 syl φ k K N 1 seq M + F k + 1 = seq M + F k + F k + 1
65 61 64 breqtrrd φ k K N 1 seq M + F k seq M + F k + 1
66 2 17 65 monoord φ seq M + F K seq M + F N