Metamath Proof Explorer


Theorem sersub

Description: The difference of two infinite series. (Contributed by NM, 17-Mar-2005) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses sersub.1 φ N M
sersub.2 φ k M N F k
sersub.3 φ k M N G k
sersub.4 φ k M N H k = F k G k
Assertion sersub φ seq M + H N = seq M + F N seq M + G N

Proof

Step Hyp Ref Expression
1 sersub.1 φ N M
2 sersub.2 φ k M N F k
3 sersub.3 φ k M N G k
4 sersub.4 φ k M N H k = F k G k
5 addcl x y x + y
6 5 adantl φ x y x + y
7 subcl x y x y
8 7 adantl φ x y x y
9 addsub4 x y z w x + y - z + w = x z + y - w
10 9 eqcomd x y z w x z + y - w = x + y - z + w
11 10 adantl φ x y z w x z + y - w = x + y - z + w
12 6 8 11 1 2 3 4 seqcaopr2 φ seq M + H N = seq M + F N seq M + G N