Metamath Proof Explorer


Theorem setc2othin

Description: The category ( SetCat2o ) is thin. A special case of setcthin . (Contributed by Zhi Wang, 20-Sep-2024)

Ref Expression
Assertion setc2othin Could not format assertion : No typesetting found for |- ( SetCat ` 2o ) e. ThinCat with typecode |-

Proof

Step Hyp Ref Expression
1 eqidd SetCat 2 𝑜 = SetCat 2 𝑜
2 2oex 2 𝑜 V
3 2 a1i 2 𝑜 V
4 elpri x x = x =
5 0ex V
6 sneq y = y =
7 6 eqeq2d y = x = y x =
8 5 7 spcev x = y x = y
9 8 orim2i x = x = x = y x = y
10 mo0sn * z z x x = y x = y
11 10 biimpri x = y x = y * z z x
12 4 9 11 3syl x * z z x
13 df2o2 2 𝑜 =
14 12 13 eleq2s x 2 𝑜 * z z x
15 14 rgen x 2 𝑜 * z z x
16 15 a1i x 2 𝑜 * z z x
17 1 3 16 setcthin Could not format ( T. -> ( SetCat ` 2o ) e. ThinCat ) : No typesetting found for |- ( T. -> ( SetCat ` 2o ) e. ThinCat ) with typecode |-
18 17 mptru Could not format ( SetCat ` 2o ) e. ThinCat : No typesetting found for |- ( SetCat ` 2o ) e. ThinCat with typecode |-