Metamath Proof Explorer


Theorem setcbas

Description: Set of objects of the category of sets (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses setcbas.c C = SetCat U
setcbas.u φ U V
Assertion setcbas φ U = Base C

Proof

Step Hyp Ref Expression
1 setcbas.c C = SetCat U
2 setcbas.u φ U V
3 catstr Base ndx U Hom ndx x U , y U y x comp ndx v U × U , z U g z 2 nd v , f 2 nd v 1 st v g f Struct 1 15
4 baseid Base = Slot Base ndx
5 snsstp1 Base ndx U Base ndx U Hom ndx x U , y U y x comp ndx v U × U , z U g z 2 nd v , f 2 nd v 1 st v g f
6 3 4 5 strfv U V U = Base Base ndx U Hom ndx x U , y U y x comp ndx v U × U , z U g z 2 nd v , f 2 nd v 1 st v g f
7 2 6 syl φ U = Base Base ndx U Hom ndx x U , y U y x comp ndx v U × U , z U g z 2 nd v , f 2 nd v 1 st v g f
8 eqidd φ x U , y U y x = x U , y U y x
9 eqidd φ v U × U , z U g z 2 nd v , f 2 nd v 1 st v g f = v U × U , z U g z 2 nd v , f 2 nd v 1 st v g f
10 1 2 8 9 setcval φ C = Base ndx U Hom ndx x U , y U y x comp ndx v U × U , z U g z 2 nd v , f 2 nd v 1 st v g f
11 10 fveq2d φ Base C = Base Base ndx U Hom ndx x U , y U y x comp ndx v U × U , z U g z 2 nd v , f 2 nd v 1 st v g f
12 7 11 eqtr4d φ U = Base C