Database
BASIC CATEGORY THEORY
Examples of categories
The category of sets
setccofval
Next ⟩
setcco
Metamath Proof Explorer
Ascii
Unicode
Theorem
setccofval
Description:
Composition in the category of sets.
(Contributed by
Mario Carneiro
, 3-Jan-2017)
Ref
Expression
Hypotheses
setcbas.c
⊢
C
=
SetCat
⁡
U
setcbas.u
⊢
φ
→
U
∈
V
setcco.o
⊢
·
˙
=
comp
⁡
C
Assertion
setccofval
⊢
φ
→
·
˙
=
v
∈
U
×
U
,
z
∈
U
⟼
g
∈
z
2
nd
⁡
v
,
f
∈
2
nd
⁡
v
1
st
⁡
v
⟼
g
∘
f
Proof
Step
Hyp
Ref
Expression
1
setcbas.c
⊢
C
=
SetCat
⁡
U
2
setcbas.u
⊢
φ
→
U
∈
V
3
setcco.o
⊢
·
˙
=
comp
⁡
C
4
eqid
⊢
Hom
⁡
C
=
Hom
⁡
C
5
1
2
4
setchomfval
⊢
φ
→
Hom
⁡
C
=
x
∈
U
,
y
∈
U
⟼
y
x
6
eqidd
⊢
φ
→
v
∈
U
×
U
,
z
∈
U
⟼
g
∈
z
2
nd
⁡
v
,
f
∈
2
nd
⁡
v
1
st
⁡
v
⟼
g
∘
f
=
v
∈
U
×
U
,
z
∈
U
⟼
g
∈
z
2
nd
⁡
v
,
f
∈
2
nd
⁡
v
1
st
⁡
v
⟼
g
∘
f
7
1
2
5
6
setcval
⊢
φ
→
C
=
Base
ndx
U
Hom
⁡
ndx
Hom
⁡
C
comp
⁡
ndx
v
∈
U
×
U
,
z
∈
U
⟼
g
∈
z
2
nd
⁡
v
,
f
∈
2
nd
⁡
v
1
st
⁡
v
⟼
g
∘
f
8
catstr
⊢
Base
ndx
U
Hom
⁡
ndx
Hom
⁡
C
comp
⁡
ndx
v
∈
U
×
U
,
z
∈
U
⟼
g
∈
z
2
nd
⁡
v
,
f
∈
2
nd
⁡
v
1
st
⁡
v
⟼
g
∘
f
Struct
1
15
9
ccoid
⊢
comp
=
Slot
comp
⁡
ndx
10
snsstp3
⊢
comp
⁡
ndx
v
∈
U
×
U
,
z
∈
U
⟼
g
∈
z
2
nd
⁡
v
,
f
∈
2
nd
⁡
v
1
st
⁡
v
⟼
g
∘
f
⊆
Base
ndx
U
Hom
⁡
ndx
Hom
⁡
C
comp
⁡
ndx
v
∈
U
×
U
,
z
∈
U
⟼
g
∈
z
2
nd
⁡
v
,
f
∈
2
nd
⁡
v
1
st
⁡
v
⟼
g
∘
f
11
2
2
xpexd
⊢
φ
→
U
×
U
∈
V
12
mpoexga
⊢
U
×
U
∈
V
∧
U
∈
V
→
v
∈
U
×
U
,
z
∈
U
⟼
g
∈
z
2
nd
⁡
v
,
f
∈
2
nd
⁡
v
1
st
⁡
v
⟼
g
∘
f
∈
V
13
11
2
12
syl2anc
⊢
φ
→
v
∈
U
×
U
,
z
∈
U
⟼
g
∈
z
2
nd
⁡
v
,
f
∈
2
nd
⁡
v
1
st
⁡
v
⟼
g
∘
f
∈
V
14
7
8
9
10
13
3
strfv3
⊢
φ
→
·
˙
=
v
∈
U
×
U
,
z
∈
U
⟼
g
∈
z
2
nd
⁡
v
,
f
∈
2
nd
⁡
v
1
st
⁡
v
⟼
g
∘
f