Step |
Hyp |
Ref |
Expression |
1 |
|
setcmon.c |
|
2 |
|
setcmon.u |
|
3 |
|
setcmon.x |
|
4 |
|
setcmon.y |
|
5 |
|
setcepi.h |
|
6 |
|
setcepi.2 |
|
7 |
|
eqid |
|
8 |
|
eqid |
|
9 |
|
eqid |
|
10 |
1
|
setccat |
|
11 |
2 10
|
syl |
|
12 |
1 2
|
setcbas |
|
13 |
3 12
|
eleqtrd |
|
14 |
4 12
|
eleqtrd |
|
15 |
7 8 9 5 11 13 14
|
epihom |
|
16 |
15
|
sselda |
|
17 |
1 2 8 3 4
|
elsetchom |
|
18 |
17
|
biimpa |
|
19 |
16 18
|
syldan |
|
20 |
19
|
frnd |
|
21 |
19
|
ffnd |
|
22 |
|
fnfvelrn |
|
23 |
21 22
|
sylan |
|
24 |
23
|
iftrued |
|
25 |
24
|
mpteq2dva |
|
26 |
19
|
ffvelrnda |
|
27 |
19
|
feqmptd |
|
28 |
|
eqidd |
|
29 |
|
eleq1 |
|
30 |
29
|
ifbid |
|
31 |
26 27 28 30
|
fmptco |
|
32 |
|
fconstmpt |
|
33 |
32
|
a1i |
|
34 |
|
eqidd |
|
35 |
26 27 33 34
|
fmptco |
|
36 |
25 31 35
|
3eqtr4d |
|
37 |
2
|
adantr |
|
38 |
3
|
adantr |
|
39 |
4
|
adantr |
|
40 |
6
|
adantr |
|
41 |
|
eqid |
|
42 |
|
1oex |
|
43 |
42
|
prid2 |
|
44 |
|
df2o3 |
|
45 |
43 44
|
eleqtrri |
|
46 |
|
0ex |
|
47 |
46
|
prid1 |
|
48 |
47 44
|
eleqtrri |
|
49 |
45 48
|
ifcli |
|
50 |
49
|
a1i |
|
51 |
41 50
|
fmpti |
|
52 |
51
|
a1i |
|
53 |
1 37 9 38 39 40 19 52
|
setcco |
|
54 |
|
fconst6g |
|
55 |
45 54
|
mp1i |
|
56 |
1 37 9 38 39 40 19 55
|
setcco |
|
57 |
36 53 56
|
3eqtr4d |
|
58 |
11
|
adantr |
|
59 |
13
|
adantr |
|
60 |
14
|
adantr |
|
61 |
6 12
|
eleqtrd |
|
62 |
61
|
adantr |
|
63 |
|
simpr |
|
64 |
1 37 8 39 40
|
elsetchom |
|
65 |
52 64
|
mpbird |
|
66 |
1 37 8 39 40
|
elsetchom |
|
67 |
55 66
|
mpbird |
|
68 |
7 8 9 5 58 59 60 62 63 65 67
|
epii |
|
69 |
57 68
|
mpbid |
|
70 |
69 32
|
eqtrdi |
|
71 |
49
|
rgenw |
|
72 |
|
mpteqb |
|
73 |
71 72
|
ax-mp |
|
74 |
70 73
|
sylib |
|
75 |
|
1n0 |
|
76 |
75
|
nesymi |
|
77 |
|
iffalse |
|
78 |
77
|
eqeq1d |
|
79 |
76 78
|
mtbiri |
|
80 |
79
|
con4i |
|
81 |
80
|
ralimi |
|
82 |
74 81
|
syl |
|
83 |
|
dfss3 |
|
84 |
82 83
|
sylibr |
|
85 |
20 84
|
eqssd |
|
86 |
|
dffo2 |
|
87 |
19 85 86
|
sylanbrc |
|
88 |
|
fof |
|
89 |
88
|
adantl |
|
90 |
17
|
biimpar |
|
91 |
89 90
|
syldan |
|
92 |
12
|
adantr |
|
93 |
92
|
eleq2d |
|
94 |
2
|
ad2antrr |
|
95 |
3
|
ad2antrr |
|
96 |
4
|
ad2antrr |
|
97 |
|
simprl |
|
98 |
89
|
adantr |
|
99 |
|
simprrl |
|
100 |
1 94 8 96 97
|
elsetchom |
|
101 |
99 100
|
mpbid |
|
102 |
1 94 9 95 96 97 98 101
|
setcco |
|
103 |
|
simprrr |
|
104 |
1 94 8 96 97
|
elsetchom |
|
105 |
103 104
|
mpbid |
|
106 |
1 94 9 95 96 97 98 105
|
setcco |
|
107 |
102 106
|
eqeq12d |
|
108 |
|
simplr |
|
109 |
101
|
ffnd |
|
110 |
105
|
ffnd |
|
111 |
|
cocan2 |
|
112 |
108 109 110 111
|
syl3anc |
|
113 |
112
|
biimpd |
|
114 |
107 113
|
sylbid |
|
115 |
114
|
anassrs |
|
116 |
115
|
ralrimivva |
|
117 |
116
|
ex |
|
118 |
93 117
|
sylbird |
|
119 |
118
|
ralrimiv |
|
120 |
7 8 9 5 11 13 14
|
isepi2 |
|
121 |
120
|
adantr |
|
122 |
91 119 121
|
mpbir2and |
|
123 |
87 122
|
impbida |
|