Metamath Proof Explorer


Theorem setchom

Description: Set of arrows of the category of sets (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses setcbas.c C = SetCat U
setcbas.u φ U V
setchomfval.h H = Hom C
setchom.x φ X U
setchom.y φ Y U
Assertion setchom φ X H Y = Y X

Proof

Step Hyp Ref Expression
1 setcbas.c C = SetCat U
2 setcbas.u φ U V
3 setchomfval.h H = Hom C
4 setchom.x φ X U
5 setchom.y φ Y U
6 1 2 3 setchomfval φ H = x U , y U y x
7 simprr φ x = X y = Y y = Y
8 simprl φ x = X y = Y x = X
9 7 8 oveq12d φ x = X y = Y y x = Y X
10 ovexd φ Y X V
11 6 9 4 5 10 ovmpod φ X H Y = Y X