Metamath Proof Explorer


Theorem setchomfval

Description: Set of arrows of the category of sets (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses setcbas.c C = SetCat U
setcbas.u φ U V
setchomfval.h H = Hom C
Assertion setchomfval φ H = x U , y U y x

Proof

Step Hyp Ref Expression
1 setcbas.c C = SetCat U
2 setcbas.u φ U V
3 setchomfval.h H = Hom C
4 eqidd φ x U , y U y x = x U , y U y x
5 eqidd φ v U × U , z U g z 2 nd v , f 2 nd v 1 st v g f = v U × U , z U g z 2 nd v , f 2 nd v 1 st v g f
6 1 2 4 5 setcval φ C = Base ndx U Hom ndx x U , y U y x comp ndx v U × U , z U g z 2 nd v , f 2 nd v 1 st v g f
7 catstr Base ndx U Hom ndx x U , y U y x comp ndx v U × U , z U g z 2 nd v , f 2 nd v 1 st v g f Struct 1 15
8 homid Hom = Slot Hom ndx
9 snsstp2 Hom ndx x U , y U y x Base ndx U Hom ndx x U , y U y x comp ndx v U × U , z U g z 2 nd v , f 2 nd v 1 st v g f
10 mpoexga U V U V x U , y U y x V
11 2 2 10 syl2anc φ x U , y U y x V
12 6 7 8 9 11 3 strfv3 φ H = x U , y U y x