| Step |
Hyp |
Ref |
Expression |
| 1 |
|
setcmon.c |
|
| 2 |
|
setcmon.u |
|
| 3 |
|
setcmon.x |
|
| 4 |
|
setcmon.y |
|
| 5 |
|
setcmon.h |
|
| 6 |
|
eqid |
|
| 7 |
|
eqid |
|
| 8 |
|
eqid |
|
| 9 |
1
|
setccat |
|
| 10 |
2 9
|
syl |
|
| 11 |
1 2
|
setcbas |
|
| 12 |
3 11
|
eleqtrd |
|
| 13 |
4 11
|
eleqtrd |
|
| 14 |
6 7 8 5 10 12 13
|
monhom |
|
| 15 |
14
|
sselda |
|
| 16 |
1 2 7 3 4
|
elsetchom |
|
| 17 |
16
|
biimpa |
|
| 18 |
15 17
|
syldan |
|
| 19 |
|
simprr |
|
| 20 |
19
|
sneqd |
|
| 21 |
20
|
xpeq2d |
|
| 22 |
18
|
adantr |
|
| 23 |
22
|
ffnd |
|
| 24 |
|
simprll |
|
| 25 |
|
fcoconst |
|
| 26 |
23 24 25
|
syl2anc |
|
| 27 |
|
simprlr |
|
| 28 |
|
fcoconst |
|
| 29 |
23 27 28
|
syl2anc |
|
| 30 |
21 26 29
|
3eqtr4d |
|
| 31 |
2
|
ad2antrr |
|
| 32 |
3
|
ad2antrr |
|
| 33 |
4
|
ad2antrr |
|
| 34 |
|
fconst6g |
|
| 35 |
24 34
|
syl |
|
| 36 |
1 31 8 32 32 33 35 22
|
setcco |
|
| 37 |
|
fconst6g |
|
| 38 |
27 37
|
syl |
|
| 39 |
1 31 8 32 32 33 38 22
|
setcco |
|
| 40 |
30 36 39
|
3eqtr4d |
|
| 41 |
10
|
ad2antrr |
|
| 42 |
12
|
ad2antrr |
|
| 43 |
13
|
ad2antrr |
|
| 44 |
|
simplr |
|
| 45 |
1 31 7 32 32
|
elsetchom |
|
| 46 |
35 45
|
mpbird |
|
| 47 |
1 31 7 32 32
|
elsetchom |
|
| 48 |
38 47
|
mpbird |
|
| 49 |
6 7 8 5 41 42 43 42 44 46 48
|
moni |
|
| 50 |
40 49
|
mpbid |
|
| 51 |
50
|
fveq1d |
|
| 52 |
|
vex |
|
| 53 |
52
|
fvconst2 |
|
| 54 |
24 53
|
syl |
|
| 55 |
|
vex |
|
| 56 |
55
|
fvconst2 |
|
| 57 |
24 56
|
syl |
|
| 58 |
51 54 57
|
3eqtr3d |
|
| 59 |
58
|
expr |
|
| 60 |
59
|
ralrimivva |
|
| 61 |
|
dff13 |
|
| 62 |
18 60 61
|
sylanbrc |
|
| 63 |
|
f1f |
|
| 64 |
16
|
biimpar |
|
| 65 |
63 64
|
sylan2 |
|
| 66 |
11
|
adantr |
|
| 67 |
66
|
eleq2d |
|
| 68 |
2
|
ad2antrr |
|
| 69 |
|
simprl |
|
| 70 |
3
|
ad2antrr |
|
| 71 |
4
|
ad2antrr |
|
| 72 |
|
simprrl |
|
| 73 |
1 68 7 69 70
|
elsetchom |
|
| 74 |
72 73
|
mpbid |
|
| 75 |
63
|
ad2antlr |
|
| 76 |
1 68 8 69 70 71 74 75
|
setcco |
|
| 77 |
|
simprrr |
|
| 78 |
1 68 7 69 70
|
elsetchom |
|
| 79 |
77 78
|
mpbid |
|
| 80 |
1 68 8 69 70 71 79 75
|
setcco |
|
| 81 |
76 80
|
eqeq12d |
|
| 82 |
|
simplr |
|
| 83 |
|
cocan1 |
|
| 84 |
82 74 79 83
|
syl3anc |
|
| 85 |
84
|
biimpd |
|
| 86 |
81 85
|
sylbid |
|
| 87 |
86
|
anassrs |
|
| 88 |
87
|
ralrimivva |
|
| 89 |
88
|
ex |
|
| 90 |
67 89
|
sylbird |
|
| 91 |
90
|
ralrimiv |
|
| 92 |
6 7 8 5 10 12 13
|
ismon2 |
|
| 93 |
92
|
adantr |
|
| 94 |
65 91 93
|
mpbir2and |
|
| 95 |
62 94
|
impbida |
|