Metamath Proof Explorer


Theorem setcthin

Description: A category of sets all of whose objects contain at most one element is thin. (Contributed by Zhi Wang, 20-Sep-2024)

Ref Expression
Hypotheses setcthin.c φ C = SetCat U
setcthin.u φ U V
setcthin.x φ x U * p p x
Assertion setcthin Could not format assertion : No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |-

Proof

Step Hyp Ref Expression
1 setcthin.c φ C = SetCat U
2 setcthin.u φ U V
3 setcthin.x φ x U * p p x
4 eqid SetCat U = SetCat U
5 4 2 setcbas φ U = Base SetCat U
6 eqidd φ Hom SetCat U = Hom SetCat U
7 elequ2 x = z p x p z
8 7 mobidv x = z * p p x * p p z
9 3 adantr φ y U z U x U * p p x
10 simprr φ y U z U z U
11 8 9 10 rspcdva φ y U z U * p p z
12 mofmo * p p z * f f : y z
13 11 12 syl φ y U z U * f f : y z
14 2 adantr φ y U z U U V
15 eqid Hom SetCat U = Hom SetCat U
16 simprl φ y U z U y U
17 4 14 15 16 10 elsetchom φ y U z U f y Hom SetCat U z f : y z
18 17 mobidv φ y U z U * f f y Hom SetCat U z * f f : y z
19 13 18 mpbird φ y U z U * f f y Hom SetCat U z
20 4 setccat U V SetCat U Cat
21 2 20 syl φ SetCat U Cat
22 5 6 19 21 isthincd Could not format ( ph -> ( SetCat ` U ) e. ThinCat ) : No typesetting found for |- ( ph -> ( SetCat ` U ) e. ThinCat ) with typecode |-
23 1 22 eqeltrd Could not format ( ph -> C e. ThinCat ) : No typesetting found for |- ( ph -> C e. ThinCat ) with typecode |-