Metamath Proof Explorer


Theorem setind

Description: Set (epsilon) induction. Theorem 5.22 of TakeutiZaring p. 21. (Contributed by NM, 17-Sep-2003)

Ref Expression
Assertion setind x x A x A A = V

Proof

Step Hyp Ref Expression
1 ssindif0 y A y V A =
2 sseq1 x = y x A y A
3 eleq1w x = y x A y A
4 2 3 imbi12d x = y x A x A y A y A
5 4 spvv x x A x A y A y A
6 1 5 syl5bir x x A x A y V A = y A
7 eldifn y V A ¬ y A
8 6 7 nsyli x x A x A y V A ¬ y V A =
9 8 imp x x A x A y V A ¬ y V A =
10 9 nrexdv x x A x A ¬ y V A y V A =
11 zfregs V A y V A y V A =
12 11 necon1bi ¬ y V A y V A = V A =
13 10 12 syl x x A x A V A =
14 vdif0 A = V V A =
15 13 14 sylibr x x A x A A = V