Metamath Proof Explorer


Theorem setlikespec

Description: If R is set-like in A , then all predecessor classes of elements of A exist. (Contributed by Scott Fenton, 20-Feb-2011) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Assertion setlikespec X A R Se A Pred R A X V

Proof

Step Hyp Ref Expression
1 df-rab x A | x R X = x | x A x R X
2 vex x V
3 2 elpred X A x Pred R A X x A x R X
4 3 abbi2dv X A Pred R A X = x | x A x R X
5 1 4 eqtr4id X A x A | x R X = Pred R A X
6 5 adantr X A R Se A x A | x R X = Pred R A X
7 seex R Se A X A x A | x R X V
8 7 ancoms X A R Se A x A | x R X V
9 6 8 eqeltrrd X A R Se A Pred R A X V