Metamath Proof Explorer


Theorem setsabs

Description: Replacing the same components twice yields the same as the second setting only. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Assertion setsabs S V C W S sSet A B sSet A C = S sSet A C

Proof

Step Hyp Ref Expression
1 setsres S V S sSet A B V A = S V A
2 1 adantr S V C W S sSet A B V A = S V A
3 2 uneq1d S V C W S sSet A B V A A C = S V A A C
4 ovexd S V S sSet A B V
5 setsval S sSet A B V C W S sSet A B sSet A C = S sSet A B V A A C
6 4 5 sylan S V C W S sSet A B sSet A C = S sSet A B V A A C
7 setsval S V C W S sSet A C = S V A A C
8 3 6 7 3eqtr4d S V C W S sSet A B sSet A C = S sSet A C