Metamath Proof Explorer


Theorem setsexstruct2

Description: An extensible structure with a replaced slot is an extensible structure. (Contributed by AV, 14-Nov-2021)

Ref Expression
Assertion setsexstruct2 G Struct X E V I y G sSet I E Struct y

Proof

Step Hyp Ref Expression
1 opex if I 1 st X I 1 st X if I 2 nd X 2 nd X I V
2 1 a1i G Struct X E V I if I 1 st X I 1 st X if I 2 nd X 2 nd X I V
3 eqidd G Struct X E V I if I 1 st X I 1 st X if I 2 nd X 2 nd X I = if I 1 st X I 1 st X if I 2 nd X 2 nd X I
4 setsstruct2 G Struct X E V I if I 1 st X I 1 st X if I 2 nd X 2 nd X I = if I 1 st X I 1 st X if I 2 nd X 2 nd X I G sSet I E Struct if I 1 st X I 1 st X if I 2 nd X 2 nd X I
5 3 4 mpdan G Struct X E V I G sSet I E Struct if I 1 st X I 1 st X if I 2 nd X 2 nd X I
6 breq2 y = if I 1 st X I 1 st X if I 2 nd X 2 nd X I G sSet I E Struct y G sSet I E Struct if I 1 st X I 1 st X if I 2 nd X 2 nd X I
7 2 5 6 spcedv G Struct X E V I y G sSet I E Struct y