Metamath Proof Explorer


Theorem setsid

Description: Value of the structure replacement function at a replaced index. (Contributed by Mario Carneiro, 1-Dec-2014) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Hypothesis setsid.e E = Slot E ndx
Assertion setsid W A C V C = E W sSet E ndx C

Proof

Step Hyp Ref Expression
1 setsid.e E = Slot E ndx
2 setsval W A C V W sSet E ndx C = W V E ndx E ndx C
3 2 fveq2d W A C V E W sSet E ndx C = E W V E ndx E ndx C
4 resexg W A W V E ndx V
5 4 adantr W A C V W V E ndx V
6 snex E ndx C V
7 unexg W V E ndx V E ndx C V W V E ndx E ndx C V
8 5 6 7 sylancl W A C V W V E ndx E ndx C V
9 1 8 strfvnd W A C V E W V E ndx E ndx C = W V E ndx E ndx C E ndx
10 fvex E ndx V
11 10 snid E ndx E ndx
12 fvres E ndx E ndx W V E ndx E ndx C E ndx E ndx = W V E ndx E ndx C E ndx
13 11 12 ax-mp W V E ndx E ndx C E ndx E ndx = W V E ndx E ndx C E ndx
14 resres W V E ndx E ndx = W V E ndx E ndx
15 disjdifr V E ndx E ndx =
16 15 reseq2i W V E ndx E ndx = W
17 res0 W =
18 16 17 eqtri W V E ndx E ndx =
19 14 18 eqtri W V E ndx E ndx =
20 19 a1i W A C V W V E ndx E ndx =
21 elex C V C V
22 21 adantl W A C V C V
23 opelxpi E ndx V C V E ndx C V × V
24 10 22 23 sylancr W A C V E ndx C V × V
25 opex E ndx C V
26 25 relsn Rel E ndx C E ndx C V × V
27 24 26 sylibr W A C V Rel E ndx C
28 dmsnopss dom E ndx C E ndx
29 relssres Rel E ndx C dom E ndx C E ndx E ndx C E ndx = E ndx C
30 27 28 29 sylancl W A C V E ndx C E ndx = E ndx C
31 20 30 uneq12d W A C V W V E ndx E ndx E ndx C E ndx = E ndx C
32 resundir W V E ndx E ndx C E ndx = W V E ndx E ndx E ndx C E ndx
33 un0 E ndx C = E ndx C
34 uncom E ndx C = E ndx C
35 33 34 eqtr3i E ndx C = E ndx C
36 31 32 35 3eqtr4g W A C V W V E ndx E ndx C E ndx = E ndx C
37 36 fveq1d W A C V W V E ndx E ndx C E ndx E ndx = E ndx C E ndx
38 13 37 eqtr3id W A C V W V E ndx E ndx C E ndx = E ndx C E ndx
39 10 a1i W A C V E ndx V
40 fvsng E ndx V C V E ndx C E ndx = C
41 39 40 sylancom W A C V E ndx C E ndx = C
42 38 41 eqtrd W A C V W V E ndx E ndx C E ndx = C
43 3 9 42 3eqtrrd W A C V C = E W sSet E ndx C