Metamath Proof Explorer


Theorem setsidvald

Description: Value of the structure replacement function, deduction version. (Contributed by AV, 14-Mar-2020)

Ref Expression
Hypotheses setsidvald.e E = Slot N
setsidvald.n N
setsidvald.s φ S V
setsidvald.f φ Fun S
setsidvald.d φ E ndx dom S
Assertion setsidvald φ S = S sSet E ndx E S

Proof

Step Hyp Ref Expression
1 setsidvald.e E = Slot N
2 setsidvald.n N
3 setsidvald.s φ S V
4 setsidvald.f φ Fun S
5 setsidvald.d φ E ndx dom S
6 fvex E S V
7 setsval S V E S V S sSet E ndx E S = S V E ndx E ndx E S
8 3 6 7 sylancl φ S sSet E ndx E S = S V E ndx E ndx E S
9 1 2 ndxid E = Slot E ndx
10 9 3 strfvnd φ E S = S E ndx
11 10 opeq2d φ E ndx E S = E ndx S E ndx
12 11 sneqd φ E ndx E S = E ndx S E ndx
13 12 uneq2d φ S V E ndx E ndx E S = S V E ndx E ndx S E ndx
14 funresdfunsn Fun S E ndx dom S S V E ndx E ndx S E ndx = S
15 4 5 14 syl2anc φ S V E ndx E ndx S E ndx = S
16 8 13 15 3eqtrrd φ S = S sSet E ndx E S