Metamath Proof Explorer


Theorem setsiedg

Description: The (indexed) edges of a structure with a base set and an inserted resp. replaced slot for the edge function. (Contributed by AV, 7-Jun-2021) (Revised by AV, 16-Nov-2021)

Ref Expression
Hypotheses setsvtx.i I = ef ndx
setsvtx.s φ G Struct X
setsvtx.b φ Base ndx dom G
setsvtx.e φ E W
Assertion setsiedg φ iEdg G sSet I E = E

Proof

Step Hyp Ref Expression
1 setsvtx.i I = ef ndx
2 setsvtx.s φ G Struct X
3 setsvtx.b φ Base ndx dom G
4 setsvtx.e φ E W
5 fvexd φ ef ndx V
6 2 5 4 setsn0fun φ Fun G sSet ef ndx E
7 2 5 4 3 basprssdmsets φ Base ndx ef ndx dom G sSet ef ndx E
8 funiedgval Fun G sSet ef ndx E Base ndx ef ndx dom G sSet ef ndx E iEdg G sSet ef ndx E = ef G sSet ef ndx E
9 6 7 8 syl2anc φ iEdg G sSet ef ndx E = ef G sSet ef ndx E
10 1 opeq1i I E = ef ndx E
11 10 oveq2i G sSet I E = G sSet ef ndx E
12 11 fveq2i iEdg G sSet I E = iEdg G sSet ef ndx E
13 12 a1i φ iEdg G sSet I E = iEdg G sSet ef ndx E
14 structex G Struct X G V
15 2 14 syl φ G V
16 edgfid ef = Slot ef ndx
17 16 setsid G V E W E = ef G sSet ef ndx E
18 15 4 17 syl2anc φ E = ef G sSet ef ndx E
19 9 13 18 3eqtr4d φ iEdg G sSet I E = E