Metamath Proof Explorer


Theorem setsmsbas

Description: The base set of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015)

Ref Expression
Hypotheses setsms.x φ X = Base M
setsms.d φ D = dist M X × X
setsms.k φ K = M sSet TopSet ndx MetOpen D
Assertion setsmsbas φ X = Base K

Proof

Step Hyp Ref Expression
1 setsms.x φ X = Base M
2 setsms.d φ D = dist M X × X
3 setsms.k φ K = M sSet TopSet ndx MetOpen D
4 baseid Base = Slot Base ndx
5 1re 1
6 1lt9 1 < 9
7 5 6 ltneii 1 9
8 basendx Base ndx = 1
9 tsetndx TopSet ndx = 9
10 8 9 neeq12i Base ndx TopSet ndx 1 9
11 7 10 mpbir Base ndx TopSet ndx
12 4 11 setsnid Base M = Base M sSet TopSet ndx MetOpen D
13 3 fveq2d φ Base K = Base M sSet TopSet ndx MetOpen D
14 12 1 13 3eqtr4a φ X = Base K