Metamath Proof Explorer


Theorem setsnid

Description: Value of the structure replacement function at an untouched index. (Contributed by Mario Carneiro, 1-Dec-2014) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Hypotheses setsid.e E = Slot E ndx
setsnid.n E ndx D
Assertion setsnid E W = E W sSet D C

Proof

Step Hyp Ref Expression
1 setsid.e E = Slot E ndx
2 setsnid.n E ndx D
3 id W V W V
4 1 3 strfvnd W V E W = W E ndx
5 ovex W sSet D C V
6 5 1 strfvn E W sSet D C = W sSet D C E ndx
7 setsres W V W sSet D C V D = W V D
8 7 fveq1d W V W sSet D C V D E ndx = W V D E ndx
9 fvex E ndx V
10 eldifsn E ndx V D E ndx V E ndx D
11 9 2 10 mpbir2an E ndx V D
12 fvres E ndx V D W sSet D C V D E ndx = W sSet D C E ndx
13 11 12 ax-mp W sSet D C V D E ndx = W sSet D C E ndx
14 fvres E ndx V D W V D E ndx = W E ndx
15 11 14 ax-mp W V D E ndx = W E ndx
16 8 13 15 3eqtr3g W V W sSet D C E ndx = W E ndx
17 6 16 eqtrid W V E W sSet D C = W E ndx
18 4 17 eqtr4d W V E W = E W sSet D C
19 1 str0 = E
20 fvprc ¬ W V E W =
21 reldmsets Rel dom sSet
22 21 ovprc1 ¬ W V W sSet D C =
23 22 fveq2d ¬ W V E W sSet D C = E
24 19 20 23 3eqtr4a ¬ W V E W = E W sSet D C
25 18 24 pm2.61i E W = E W sSet D C