Metamath Proof Explorer


Theorem setsres

Description: The structure replacement function does not affect the value of S away from A . (Contributed by Mario Carneiro, 1-Dec-2014) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Assertion setsres S V S sSet A B V A = S V A

Proof

Step Hyp Ref Expression
1 opex A B V
2 setsvalg S V A B V S sSet A B = S V dom A B A B
3 1 2 mpan2 S V S sSet A B = S V dom A B A B
4 3 reseq1d S V S sSet A B V A = S V dom A B A B V A
5 resundir S V dom A B A B V A = S V dom A B V A A B V A
6 dmsnopss dom A B A
7 sscon dom A B A V A V dom A B
8 6 7 ax-mp V A V dom A B
9 resabs1 V A V dom A B S V dom A B V A = S V A
10 8 9 ax-mp S V dom A B V A = S V A
11 dmres dom A B V A = V A dom A B
12 disj2 V A dom A B = V A V dom A B
13 8 12 mpbir V A dom A B =
14 11 13 eqtri dom A B V A =
15 relres Rel A B V A
16 reldm0 Rel A B V A A B V A = dom A B V A =
17 15 16 ax-mp A B V A = dom A B V A =
18 14 17 mpbir A B V A =
19 10 18 uneq12i S V dom A B V A A B V A = S V A
20 un0 S V A = S V A
21 19 20 eqtri S V dom A B V A A B V A = S V A
22 5 21 eqtri S V dom A B A B V A = S V A
23 4 22 eqtrdi S V S sSet A B V A = S V A