Metamath Proof Explorer


Theorem setsstruct

Description: An extensible structure with a replaced slot is an extensible structure. (Contributed by AV, 9-Jun-2021) (Revised by AV, 14-Nov-2021)

Ref Expression
Assertion setsstruct E V I M G Struct M N G sSet I E Struct M if I N N I

Proof

Step Hyp Ref Expression
1 isstruct G Struct M N M N M N Fun G dom G M N
2 simp2 M N M N G Struct M N E V I M G Struct M N
3 simp3l M N M N G Struct M N E V I M E V
4 1z 1
5 nnge1 M 1 M
6 eluzuzle 1 1 M I M I 1
7 4 5 6 sylancr M I M I 1
8 elnnuz I I 1
9 7 8 syl6ibr M I M I
10 9 adantld M E V I M I
11 10 3ad2ant1 M N M N E V I M I
12 11 a1d M N M N G Struct M N E V I M I
13 12 3imp M N M N G Struct M N E V I M I
14 2 3 13 3jca M N M N G Struct M N E V I M G Struct M N E V I
15 op1stg M N 1 st M N = M
16 15 breq2d M N I 1 st M N I M
17 eqidd M N I = I
18 16 17 15 ifbieq12d M N if I 1 st M N I 1 st M N = if I M I M
19 18 3adant3 M N M N if I 1 st M N I 1 st M N = if I M I M
20 19 adantr M N M N E V I M if I 1 st M N I 1 st M N = if I M I M
21 eluz2 I M M I M I
22 zre I I
23 22 rexrd I I *
24 23 3ad2ant2 M I M I I *
25 zre M M
26 25 rexrd M M *
27 26 3ad2ant1 M I M I M *
28 simp3 M I M I M I
29 24 27 28 3jca M I M I I * M * M I
30 29 a1d M I M I M N M N I * M * M I
31 21 30 sylbi I M M N M N I * M * M I
32 31 adantl E V I M M N M N I * M * M I
33 32 impcom M N M N E V I M I * M * M I
34 xrmineq I * M * M I if I M I M = M
35 33 34 syl M N M N E V I M if I M I M = M
36 20 35 eqtr2d M N M N E V I M M = if I 1 st M N I 1 st M N
37 36 3adant2 M N M N G Struct M N E V I M M = if I 1 st M N I 1 st M N
38 op2ndg M N 2 nd M N = N
39 38 eqcomd M N N = 2 nd M N
40 39 breq2d M N I N I 2 nd M N
41 40 39 17 ifbieq12d M N if I N N I = if I 2 nd M N 2 nd M N I
42 41 3adant3 M N M N if I N N I = if I 2 nd M N 2 nd M N I
43 42 3ad2ant1 M N M N G Struct M N E V I M if I N N I = if I 2 nd M N 2 nd M N I
44 37 43 opeq12d M N M N G Struct M N E V I M M if I N N I = if I 1 st M N I 1 st M N if I 2 nd M N 2 nd M N I
45 14 44 jca M N M N G Struct M N E V I M G Struct M N E V I M if I N N I = if I 1 st M N I 1 st M N if I 2 nd M N 2 nd M N I
46 45 3exp M N M N G Struct M N E V I M G Struct M N E V I M if I N N I = if I 1 st M N I 1 st M N if I 2 nd M N 2 nd M N I
47 46 3ad2ant1 M N M N Fun G dom G M N G Struct M N E V I M G Struct M N E V I M if I N N I = if I 1 st M N I 1 st M N if I 2 nd M N 2 nd M N I
48 1 47 sylbi G Struct M N G Struct M N E V I M G Struct M N E V I M if I N N I = if I 1 st M N I 1 st M N if I 2 nd M N 2 nd M N I
49 48 pm2.43i G Struct M N E V I M G Struct M N E V I M if I N N I = if I 1 st M N I 1 st M N if I 2 nd M N 2 nd M N I
50 49 expdcom E V I M G Struct M N G Struct M N E V I M if I N N I = if I 1 st M N I 1 st M N if I 2 nd M N 2 nd M N I
51 50 3imp E V I M G Struct M N G Struct M N E V I M if I N N I = if I 1 st M N I 1 st M N if I 2 nd M N 2 nd M N I
52 setsstruct2 G Struct M N E V I M if I N N I = if I 1 st M N I 1 st M N if I 2 nd M N 2 nd M N I G sSet I E Struct M if I N N I
53 51 52 syl E V I M G Struct M N G sSet I E Struct M if I N N I