Metamath Proof Explorer


Theorem setsval

Description: Value of the structure replacement function. (Contributed by Mario Carneiro, 1-Dec-2014) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Assertion setsval S V B W S sSet A B = S V A A B

Proof

Step Hyp Ref Expression
1 opex A B V
2 setsvalg S V A B V S sSet A B = S V dom A B A B
3 1 2 mpan2 S V S sSet A B = S V dom A B A B
4 dmsnopg B W dom A B = A
5 4 difeq2d B W V dom A B = V A
6 5 reseq2d B W S V dom A B = S V A
7 6 uneq1d B W S V dom A B A B = S V A A B
8 3 7 sylan9eq S V B W S sSet A B = S V A A B