Metamath Proof Explorer


Theorem setsvalg

Description: Value of the structure replacement function. (Contributed by Mario Carneiro, 30-Apr-2015)

Ref Expression
Assertion setsvalg S V A W S sSet A = S V dom A A

Proof

Step Hyp Ref Expression
1 elex S V S V
2 elex A W A V
3 resexg S V S V dom A V
4 3 adantr S V A V S V dom A V
5 snex A V
6 unexg S V dom A V A V S V dom A A V
7 4 5 6 sylancl S V A V S V dom A A V
8 simpl s = S e = A s = S
9 simpr s = S e = A e = A
10 9 sneqd s = S e = A e = A
11 10 dmeqd s = S e = A dom e = dom A
12 11 difeq2d s = S e = A V dom e = V dom A
13 8 12 reseq12d s = S e = A s V dom e = S V dom A
14 13 10 uneq12d s = S e = A s V dom e e = S V dom A A
15 df-sets sSet = s V , e V s V dom e e
16 14 15 ovmpoga S V A V S V dom A A V S sSet A = S V dom A A
17 7 16 mpd3an3 S V A V S sSet A = S V dom A A
18 1 2 17 syl2an S V A W S sSet A = S V dom A A