Metamath Proof Explorer


Theorem sgmf

Description: The divisor function is a function into the complex numbers. (Contributed by Mario Carneiro, 22-Sep-2014) (Revised by Mario Carneiro, 21-Jun-2015)

Ref Expression
Assertion sgmf σ : ×

Proof

Step Hyp Ref Expression
1 fzfid x n 1 n Fin
2 dvdsssfz1 n p | p n 1 n
3 2 adantl x n p | p n 1 n
4 1 3 ssfid x n p | p n Fin
5 elrabi k p | p n k
6 5 nncnd k p | p n k
7 simpl x n x
8 cxpcl k x k x
9 6 7 8 syl2anr x n k p | p n k x
10 4 9 fsumcl x n k p | p n k x
11 10 rgen2 x n k p | p n k x
12 df-sgm σ = x , n k p | p n k x
13 12 fmpo x n k p | p n k x σ : ×
14 11 13 mpbi σ : ×