Step |
Hyp |
Ref |
Expression |
1 |
|
simpr1 |
|
2 |
|
simpr2 |
|
3 |
|
simpr3 |
|
4 |
|
eqid |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
|
ssrab2 |
|
8 |
|
simpr |
|
9 |
7 8
|
sselid |
|
10 |
9
|
nncnd |
|
11 |
|
simpll |
|
12 |
10 11
|
cxpcld |
|
13 |
|
ssrab2 |
|
14 |
|
simpr |
|
15 |
13 14
|
sselid |
|
16 |
15
|
nncnd |
|
17 |
|
simpll |
|
18 |
16 17
|
cxpcld |
|
19 |
9
|
adantrr |
|
20 |
19
|
nnred |
|
21 |
19
|
nnnn0d |
|
22 |
21
|
nn0ge0d |
|
23 |
15
|
adantrl |
|
24 |
23
|
nnred |
|
25 |
23
|
nnnn0d |
|
26 |
25
|
nn0ge0d |
|
27 |
|
simpll |
|
28 |
20 22 24 26 27
|
mulcxpd |
|
29 |
28
|
eqcomd |
|
30 |
|
oveq1 |
|
31 |
1 2 3 4 5 6 12 18 29 30
|
fsumdvdsmul |
|
32 |
|
sgmval |
|
33 |
1 32
|
syldan |
|
34 |
|
sgmval |
|
35 |
2 34
|
syldan |
|
36 |
33 35
|
oveq12d |
|
37 |
1 2
|
nnmulcld |
|
38 |
|
sgmval |
|
39 |
37 38
|
syldan |
|
40 |
31 36 39
|
3eqtr4rd |
|