Metamath Proof Explorer


Theorem sgmnncl

Description: Closure of the divisor function. (Contributed by Mario Carneiro, 21-Jun-2015)

Ref Expression
Assertion sgmnncl A 0 B A σ B

Proof

Step Hyp Ref Expression
1 nn0z A 0 A
2 sgmval2 A B A σ B = k p | p B k A
3 1 2 sylan A 0 B A σ B = k p | p B k A
4 fzfid A 0 B 1 B Fin
5 dvdsssfz1 B p | p B 1 B
6 5 adantl A 0 B p | p B 1 B
7 4 6 ssfid A 0 B p | p B Fin
8 elrabi k p | p B k
9 simpl A 0 B A 0
10 nnexpcl k A 0 k A
11 8 9 10 syl2anr A 0 B k p | p B k A
12 11 nnzd A 0 B k p | p B k A
13 7 12 fsumzcl A 0 B k p | p B k A
14 nnz B B
15 iddvds B B B
16 14 15 syl B B B
17 breq1 p = B p B B B
18 17 rspcev B B B p p B
19 16 18 mpdan B p p B
20 rabn0 p | p B p p B
21 19 20 sylibr B p | p B
22 21 adantl A 0 B p | p B
23 11 nnrpd A 0 B k p | p B k A +
24 7 22 23 fsumrpcl A 0 B k p | p B k A +
25 24 rpgt0d A 0 B 0 < k p | p B k A
26 elnnz k p | p B k A k p | p B k A 0 < k p | p B k A
27 13 25 26 sylanbrc A 0 B k p | p B k A
28 3 27 eqeltrd A 0 B A σ B