Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
Number-theoretical functions
sgmval2
Next ⟩
0sgm
Metamath Proof Explorer
Ascii
Unicode
Theorem
sgmval2
Description:
The value of the divisor function.
(Contributed by
Mario Carneiro
, 21-Jun-2015)
Ref
Expression
Assertion
sgmval2
⊢
A
∈
ℤ
∧
B
∈
ℕ
→
A
σ
B
=
∑
k
∈
p
∈
ℕ
|
p
∥
B
k
A
Proof
Step
Hyp
Ref
Expression
1
zcn
⊢
A
∈
ℤ
→
A
∈
ℂ
2
sgmval
⊢
A
∈
ℂ
∧
B
∈
ℕ
→
A
σ
B
=
∑
k
∈
p
∈
ℕ
|
p
∥
B
k
A
3
1
2
sylan
⊢
A
∈
ℤ
∧
B
∈
ℕ
→
A
σ
B
=
∑
k
∈
p
∈
ℕ
|
p
∥
B
k
A
4
ssrab2
⊢
p
∈
ℕ
|
p
∥
B
⊆
ℕ
5
simpr
⊢
A
∈
ℤ
∧
B
∈
ℕ
∧
k
∈
p
∈
ℕ
|
p
∥
B
→
k
∈
p
∈
ℕ
|
p
∥
B
6
4
5
sselid
⊢
A
∈
ℤ
∧
B
∈
ℕ
∧
k
∈
p
∈
ℕ
|
p
∥
B
→
k
∈
ℕ
7
6
nncnd
⊢
A
∈
ℤ
∧
B
∈
ℕ
∧
k
∈
p
∈
ℕ
|
p
∥
B
→
k
∈
ℂ
8
6
nnne0d
⊢
A
∈
ℤ
∧
B
∈
ℕ
∧
k
∈
p
∈
ℕ
|
p
∥
B
→
k
≠
0
9
simpll
⊢
A
∈
ℤ
∧
B
∈
ℕ
∧
k
∈
p
∈
ℕ
|
p
∥
B
→
A
∈
ℤ
10
7
8
9
cxpexpzd
⊢
A
∈
ℤ
∧
B
∈
ℕ
∧
k
∈
p
∈
ℕ
|
p
∥
B
→
k
A
=
k
A
11
10
sumeq2dv
⊢
A
∈
ℤ
∧
B
∈
ℕ
→
∑
k
∈
p
∈
ℕ
|
p
∥
B
k
A
=
∑
k
∈
p
∈
ℕ
|
p
∥
B
k
A
12
3
11
eqtrd
⊢
A
∈
ℤ
∧
B
∈
ℕ
→
A
σ
B
=
∑
k
∈
p
∈
ℕ
|
p
∥
B
k
A