Metamath Proof Explorer


Theorem sgmval2

Description: The value of the divisor function. (Contributed by Mario Carneiro, 21-Jun-2015)

Ref Expression
Assertion sgmval2 A B A σ B = k p | p B k A

Proof

Step Hyp Ref Expression
1 zcn A A
2 sgmval A B A σ B = k p | p B k A
3 1 2 sylan A B A σ B = k p | p B k A
4 ssrab2 p | p B
5 simpr A B k p | p B k p | p B
6 4 5 sselid A B k p | p B k
7 6 nncnd A B k p | p B k
8 6 nnne0d A B k p | p B k 0
9 simpll A B k p | p B A
10 7 8 9 cxpexpzd A B k p | p B k A = k A
11 10 sumeq2dv A B k p | p B k A = k p | p B k A
12 3 11 eqtrd A B A σ B = k p | p B k A