Database BASIC TOPOLOGY Metric spaces Normed algebraic structures sgrim  
				
		 
		
			
		 
		Description:   The induced metric on a subgroup is the induced metric on the parent
       group equipped with a norm.  (Contributed by NM , 1-Feb-2008)   (Revised by AV , 19-Oct-2021) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						sgrim.x   ⊢   X  =  T  ↾  𝑠 U      
					 
					
						sgrim.d   ⊢   D  =   dist  ⁡  T        
					 
					
						sgrim.e   ⊢   E  =   dist  ⁡  X        
					 
				
					Assertion 
					sgrim    ⊢   U  ∈  S    →   E  =  D         
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							sgrim.x  ⊢   X  =  T  ↾  𝑠 U      
						
							2 
								
							 
							sgrim.d  ⊢   D  =   dist  ⁡  T        
						
							3 
								
							 
							sgrim.e  ⊢   E  =   dist  ⁡  X        
						
							4 
								1  2 
							 
							ressds   ⊢   U  ∈  S    →   D  =   dist  ⁡  X          
						
							5 
								3  4 
							 
							eqtr4id   ⊢   U  ∈  S    →   E  =  D