Metamath Proof Explorer


Theorem sgrp0

Description: Any set with an empty base set and any group operation is a semigroup. (Contributed by AV, 28-Aug-2021)

Ref Expression
Assertion sgrp0 M V Base M = M Smgrp

Proof

Step Hyp Ref Expression
1 mgm0 M V Base M = M Mgm
2 rzal Base M = x Base M y Base M z Base M x + M y + M z = x + M y + M z
3 2 adantl M V Base M = x Base M y Base M z Base M x + M y + M z = x + M y + M z
4 eqid Base M = Base M
5 eqid + M = + M
6 4 5 issgrp M Smgrp M Mgm x Base M y Base M z Base M x + M y + M z = x + M y + M z
7 1 3 6 sylanbrc M V Base M = M Smgrp