Metamath Proof Explorer


Theorem sgrp0

Description: Any set with an empty base set and any group operation is a semigroup. (Contributed by AV, 28-Aug-2021)

Ref Expression
Assertion sgrp0 Could not format assertion : No typesetting found for |- ( ( M e. V /\ ( Base ` M ) = (/) ) -> M e. Smgrp ) with typecode |-

Proof

Step Hyp Ref Expression
1 mgm0 M V Base M = M Mgm
2 rzal Base M = x Base M y Base M z Base M x + M y + M z = x + M y + M z
3 2 adantl M V Base M = x Base M y Base M z Base M x + M y + M z = x + M y + M z
4 eqid Base M = Base M
5 eqid + M = + M
6 4 5 issgrp Could not format ( M e. Smgrp <-> ( M e. Mgm /\ A. x e. ( Base ` M ) A. y e. ( Base ` M ) A. z e. ( Base ` M ) ( ( x ( +g ` M ) y ) ( +g ` M ) z ) = ( x ( +g ` M ) ( y ( +g ` M ) z ) ) ) ) : No typesetting found for |- ( M e. Smgrp <-> ( M e. Mgm /\ A. x e. ( Base ` M ) A. y e. ( Base ` M ) A. z e. ( Base ` M ) ( ( x ( +g ` M ) y ) ( +g ` M ) z ) = ( x ( +g ` M ) ( y ( +g ` M ) z ) ) ) ) with typecode |-
7 1 3 6 sylanbrc Could not format ( ( M e. V /\ ( Base ` M ) = (/) ) -> M e. Smgrp ) : No typesetting found for |- ( ( M e. V /\ ( Base ` M ) = (/) ) -> M e. Smgrp ) with typecode |-