Metamath Proof Explorer


Theorem sgrp0b

Description: The structure with an empty base set and any group operation is a semigroup. (Contributed by AV, 28-Aug-2021)

Ref Expression
Assertion sgrp0b Could not format assertion : No typesetting found for |- { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } e. Smgrp with typecode |-

Proof

Step Hyp Ref Expression
1 mgm0b Base ndx + ndx O Mgm
2 ral0 x y z x + Base ndx + ndx O y + Base ndx + ndx O z = x + Base ndx + ndx O y + Base ndx + ndx O z
3 0ex V
4 eqid Base ndx + ndx O = Base ndx + ndx O
5 4 grpbase V = Base Base ndx + ndx O
6 3 5 ax-mp = Base Base ndx + ndx O
7 eqid + Base ndx + ndx O = + Base ndx + ndx O
8 6 7 issgrp Could not format ( { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } e. Smgrp <-> ( { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } e. Mgm /\ A. x e. (/) A. y e. (/) A. z e. (/) ( ( x ( +g ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) y ) ( +g ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) z ) = ( x ( +g ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) ( y ( +g ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) z ) ) ) ) : No typesetting found for |- ( { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } e. Smgrp <-> ( { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } e. Mgm /\ A. x e. (/) A. y e. (/) A. z e. (/) ( ( x ( +g ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) y ) ( +g ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) z ) = ( x ( +g ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) ( y ( +g ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) z ) ) ) ) with typecode |-
9 1 2 8 mpbir2an Could not format { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } e. Smgrp : No typesetting found for |- { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } e. Smgrp with typecode |-