Metamath Proof Explorer


Theorem sgrp0b

Description: The structure with an empty base set and any group operation is a semigroup. (Contributed by AV, 28-Aug-2021)

Ref Expression
Assertion sgrp0b Base ndx + ndx O Smgrp

Proof

Step Hyp Ref Expression
1 mgm0b Base ndx + ndx O Mgm
2 ral0 x y z x + Base ndx + ndx O y + Base ndx + ndx O z = x + Base ndx + ndx O y + Base ndx + ndx O z
3 0ex V
4 eqid Base ndx + ndx O = Base ndx + ndx O
5 4 grpbase V = Base Base ndx + ndx O
6 3 5 ax-mp = Base Base ndx + ndx O
7 eqid + Base ndx + ndx O = + Base ndx + ndx O
8 6 7 issgrp Base ndx + ndx O Smgrp Base ndx + ndx O Mgm x y z x + Base ndx + ndx O y + Base ndx + ndx O z = x + Base ndx + ndx O y + Base ndx + ndx O z
9 1 2 8 mpbir2an Base ndx + ndx O Smgrp