Metamath Proof Explorer


Theorem sgrpidmnd

Description: A semigroup with an identity element which is not the empty set is a monoid. Of course there could be monoids with the empty set as identity element (see, for example, the monoid of the power set of a class under union, pwmnd and pwmndid ), but these cannot be proven to be monoids with this theorem. (Contributed by AV, 29-Jan-2024)

Ref Expression
Hypotheses sgrpidmnd.b B = Base G
sgrpidmnd.0 0 ˙ = 0 G
Assertion sgrpidmnd Could not format assertion : No typesetting found for |- ( ( G e. Smgrp /\ E. e e. B ( e =/= (/) /\ e = .0. ) ) -> G e. Mnd ) with typecode |-

Proof

Step Hyp Ref Expression
1 sgrpidmnd.b B = Base G
2 sgrpidmnd.0 0 ˙ = 0 G
3 eqid + G = + G
4 1 3 2 grpidval 0 ˙ = ι y | y B x B y + G x = x x + G y = x
5 4 eqeq2i e = 0 ˙ e = ι y | y B x B y + G x = x x + G y = x
6 eleq1w y = e y B e B
7 oveq1 y = e y + G x = e + G x
8 7 eqeq1d y = e y + G x = x e + G x = x
9 8 ovanraleqv y = e x B y + G x = x x + G y = x x B e + G x = x x + G e = x
10 6 9 anbi12d y = e y B x B y + G x = x x + G y = x e B x B e + G x = x x + G e = x
11 10 iotan0 e B e e = ι y | y B x B y + G x = x x + G y = x e B x B e + G x = x x + G e = x
12 rsp x B e + G x = x x + G e = x x B e + G x = x x + G e = x
13 11 12 simpl2im e B e e = ι y | y B x B y + G x = x x + G y = x x B e + G x = x x + G e = x
14 13 3expb e B e e = ι y | y B x B y + G x = x x + G y = x x B e + G x = x x + G e = x
15 14 expcom e e = ι y | y B x B y + G x = x x + G y = x e B x B e + G x = x x + G e = x
16 5 15 sylan2b e e = 0 ˙ e B x B e + G x = x x + G e = x
17 16 impcom e B e e = 0 ˙ x B e + G x = x x + G e = x
18 17 ralrimiv e B e e = 0 ˙ x B e + G x = x x + G e = x
19 18 ex e B e e = 0 ˙ x B e + G x = x x + G e = x
20 19 reximia e B e e = 0 ˙ e B x B e + G x = x x + G e = x
21 20 anim2i Could not format ( ( G e. Smgrp /\ E. e e. B ( e =/= (/) /\ e = .0. ) ) -> ( G e. Smgrp /\ E. e e. B A. x e. B ( ( e ( +g ` G ) x ) = x /\ ( x ( +g ` G ) e ) = x ) ) ) : No typesetting found for |- ( ( G e. Smgrp /\ E. e e. B ( e =/= (/) /\ e = .0. ) ) -> ( G e. Smgrp /\ E. e e. B A. x e. B ( ( e ( +g ` G ) x ) = x /\ ( x ( +g ` G ) e ) = x ) ) ) with typecode |-
22 1 3 ismnddef Could not format ( G e. Mnd <-> ( G e. Smgrp /\ E. e e. B A. x e. B ( ( e ( +g ` G ) x ) = x /\ ( x ( +g ` G ) e ) = x ) ) ) : No typesetting found for |- ( G e. Mnd <-> ( G e. Smgrp /\ E. e e. B A. x e. B ( ( e ( +g ` G ) x ) = x /\ ( x ( +g ` G ) e ) = x ) ) ) with typecode |-
23 21 22 sylibr Could not format ( ( G e. Smgrp /\ E. e e. B ( e =/= (/) /\ e = .0. ) ) -> G e. Mnd ) : No typesetting found for |- ( ( G e. Smgrp /\ E. e e. B ( e =/= (/) /\ e = .0. ) ) -> G e. Mnd ) with typecode |-