Database
BASIC ALGEBRAIC STRUCTURES
Monoids
Semigroups
sgrpmgm
Next ⟩
sgrpass
Metamath Proof Explorer
Ascii
Unicode
Theorem
sgrpmgm
Description:
A semigroup is a magma.
(Contributed by
FL
, 2-Nov-2009)
(Revised by
AV
, 6-Jan-2020)
Ref
Expression
Assertion
sgrpmgm
⊢
M
∈
Smgrp
→
M
∈
Mgm
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
Base
M
=
Base
M
2
eqid
⊢
+
M
=
+
M
3
1
2
issgrp
⊢
M
∈
Smgrp
↔
M
∈
Mgm
∧
∀
x
∈
Base
M
∀
y
∈
Base
M
∀
z
∈
Base
M
x
+
M
y
+
M
z
=
x
+
M
y
+
M
z
4
3
simplbi
⊢
M
∈
Smgrp
→
M
∈
Mgm