Metamath Proof Explorer


Theorem sgrpmgm

Description: A semigroup is a magma. (Contributed by FL, 2-Nov-2009) (Revised by AV, 6-Jan-2020)

Ref Expression
Assertion sgrpmgm M Smgrp M Mgm

Proof

Step Hyp Ref Expression
1 eqid Base M = Base M
2 eqid + M = + M
3 1 2 issgrp M Smgrp M Mgm x Base M y Base M z Base M x + M y + M z = x + M y + M z
4 3 simplbi M Smgrp M Mgm