Metamath Proof Explorer


Theorem sgrpmgm

Description: A semigroup is a magma. (Contributed by FL, 2-Nov-2009) (Revised by AV, 6-Jan-2020)

Ref Expression
Assertion sgrpmgm Could not format assertion : No typesetting found for |- ( M e. Smgrp -> M e. Mgm ) with typecode |-

Proof

Step Hyp Ref Expression
1 eqid Base M = Base M
2 eqid + M = + M
3 1 2 issgrp Could not format ( M e. Smgrp <-> ( M e. Mgm /\ A. x e. ( Base ` M ) A. y e. ( Base ` M ) A. z e. ( Base ` M ) ( ( x ( +g ` M ) y ) ( +g ` M ) z ) = ( x ( +g ` M ) ( y ( +g ` M ) z ) ) ) ) : No typesetting found for |- ( M e. Smgrp <-> ( M e. Mgm /\ A. x e. ( Base ` M ) A. y e. ( Base ` M ) A. z e. ( Base ` M ) ( ( x ( +g ` M ) y ) ( +g ` M ) z ) = ( x ( +g ` M ) ( y ( +g ` M ) z ) ) ) ) with typecode |-
4 3 simplbi Could not format ( M e. Smgrp -> M e. Mgm ) : No typesetting found for |- ( M e. Smgrp -> M e. Mgm ) with typecode |-