Metamath Proof Explorer


Theorem sgrppropd

Description: If two structures are sets, have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, one is a semigroup iff the other one is. (Contributed by AV, 15-Feb-2025)

Ref Expression
Hypotheses sgrppropd.k φ K V
sgrppropd.l φ L W
sgrppropd.1 φ B = Base K
sgrppropd.2 φ B = Base L
sgrppropd.3 φ x B y B x + K y = x + L y
Assertion sgrppropd Could not format assertion : No typesetting found for |- ( ph -> ( K e. Smgrp <-> L e. Smgrp ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 sgrppropd.k φ K V
2 sgrppropd.l φ L W
3 sgrppropd.1 φ B = Base K
4 sgrppropd.2 φ B = Base L
5 sgrppropd.3 φ x B y B x + K y = x + L y
6 simplr Could not format ( ( ( ph /\ K e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> K e. Smgrp ) : No typesetting found for |- ( ( ( ph /\ K e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> K e. Smgrp ) with typecode |-
7 simprl Could not format ( ( ( ph /\ K e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> x e. B ) : No typesetting found for |- ( ( ( ph /\ K e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> x e. B ) with typecode |-
8 3 ad2antrr Could not format ( ( ( ph /\ K e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> B = ( Base ` K ) ) : No typesetting found for |- ( ( ( ph /\ K e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> B = ( Base ` K ) ) with typecode |-
9 7 8 eleqtrd Could not format ( ( ( ph /\ K e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> x e. ( Base ` K ) ) : No typesetting found for |- ( ( ( ph /\ K e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> x e. ( Base ` K ) ) with typecode |-
10 simprr Could not format ( ( ( ph /\ K e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> y e. B ) : No typesetting found for |- ( ( ( ph /\ K e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> y e. B ) with typecode |-
11 10 8 eleqtrd Could not format ( ( ( ph /\ K e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> y e. ( Base ` K ) ) : No typesetting found for |- ( ( ( ph /\ K e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> y e. ( Base ` K ) ) with typecode |-
12 eqid Base K = Base K
13 eqid + K = + K
14 12 13 sgrpcl Could not format ( ( K e. Smgrp /\ x e. ( Base ` K ) /\ y e. ( Base ` K ) ) -> ( x ( +g ` K ) y ) e. ( Base ` K ) ) : No typesetting found for |- ( ( K e. Smgrp /\ x e. ( Base ` K ) /\ y e. ( Base ` K ) ) -> ( x ( +g ` K ) y ) e. ( Base ` K ) ) with typecode |-
15 6 9 11 14 syl3anc Could not format ( ( ( ph /\ K e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) e. ( Base ` K ) ) : No typesetting found for |- ( ( ( ph /\ K e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) e. ( Base ` K ) ) with typecode |-
16 15 8 eleqtrrd Could not format ( ( ( ph /\ K e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) e. B ) : No typesetting found for |- ( ( ( ph /\ K e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) e. B ) with typecode |-
17 16 ralrimivva Could not format ( ( ph /\ K e. Smgrp ) -> A. x e. B A. y e. B ( x ( +g ` K ) y ) e. B ) : No typesetting found for |- ( ( ph /\ K e. Smgrp ) -> A. x e. B A. y e. B ( x ( +g ` K ) y ) e. B ) with typecode |-
18 17 ex Could not format ( ph -> ( K e. Smgrp -> A. x e. B A. y e. B ( x ( +g ` K ) y ) e. B ) ) : No typesetting found for |- ( ph -> ( K e. Smgrp -> A. x e. B A. y e. B ( x ( +g ` K ) y ) e. B ) ) with typecode |-
19 simplr Could not format ( ( ( ph /\ L e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> L e. Smgrp ) : No typesetting found for |- ( ( ( ph /\ L e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> L e. Smgrp ) with typecode |-
20 simprl Could not format ( ( ( ph /\ L e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> x e. B ) : No typesetting found for |- ( ( ( ph /\ L e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> x e. B ) with typecode |-
21 4 ad2antrr Could not format ( ( ( ph /\ L e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> B = ( Base ` L ) ) : No typesetting found for |- ( ( ( ph /\ L e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> B = ( Base ` L ) ) with typecode |-
22 20 21 eleqtrd Could not format ( ( ( ph /\ L e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> x e. ( Base ` L ) ) : No typesetting found for |- ( ( ( ph /\ L e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> x e. ( Base ` L ) ) with typecode |-
23 simprr Could not format ( ( ( ph /\ L e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> y e. B ) : No typesetting found for |- ( ( ( ph /\ L e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> y e. B ) with typecode |-
24 23 21 eleqtrd Could not format ( ( ( ph /\ L e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> y e. ( Base ` L ) ) : No typesetting found for |- ( ( ( ph /\ L e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> y e. ( Base ` L ) ) with typecode |-
25 eqid Base L = Base L
26 eqid + L = + L
27 25 26 sgrpcl Could not format ( ( L e. Smgrp /\ x e. ( Base ` L ) /\ y e. ( Base ` L ) ) -> ( x ( +g ` L ) y ) e. ( Base ` L ) ) : No typesetting found for |- ( ( L e. Smgrp /\ x e. ( Base ` L ) /\ y e. ( Base ` L ) ) -> ( x ( +g ` L ) y ) e. ( Base ` L ) ) with typecode |-
28 19 22 24 27 syl3anc Could not format ( ( ( ph /\ L e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` L ) y ) e. ( Base ` L ) ) : No typesetting found for |- ( ( ( ph /\ L e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` L ) y ) e. ( Base ` L ) ) with typecode |-
29 5 adantlr Could not format ( ( ( ph /\ L e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) : No typesetting found for |- ( ( ( ph /\ L e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) with typecode |-
30 28 29 21 3eltr4d Could not format ( ( ( ph /\ L e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) e. B ) : No typesetting found for |- ( ( ( ph /\ L e. Smgrp ) /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) e. B ) with typecode |-
31 30 ralrimivva Could not format ( ( ph /\ L e. Smgrp ) -> A. x e. B A. y e. B ( x ( +g ` K ) y ) e. B ) : No typesetting found for |- ( ( ph /\ L e. Smgrp ) -> A. x e. B A. y e. B ( x ( +g ` K ) y ) e. B ) with typecode |-
32 31 ex Could not format ( ph -> ( L e. Smgrp -> A. x e. B A. y e. B ( x ( +g ` K ) y ) e. B ) ) : No typesetting found for |- ( ph -> ( L e. Smgrp -> A. x e. B A. y e. B ( x ( +g ` K ) y ) e. B ) ) with typecode |-
33 12 13 issgrpv Could not format ( K e. V -> ( K e. Smgrp <-> A. u e. ( Base ` K ) A. v e. ( Base ` K ) ( ( u ( +g ` K ) v ) e. ( Base ` K ) /\ A. w e. ( Base ` K ) ( ( u ( +g ` K ) v ) ( +g ` K ) w ) = ( u ( +g ` K ) ( v ( +g ` K ) w ) ) ) ) ) : No typesetting found for |- ( K e. V -> ( K e. Smgrp <-> A. u e. ( Base ` K ) A. v e. ( Base ` K ) ( ( u ( +g ` K ) v ) e. ( Base ` K ) /\ A. w e. ( Base ` K ) ( ( u ( +g ` K ) v ) ( +g ` K ) w ) = ( u ( +g ` K ) ( v ( +g ` K ) w ) ) ) ) ) with typecode |-
34 1 33 syl Could not format ( ph -> ( K e. Smgrp <-> A. u e. ( Base ` K ) A. v e. ( Base ` K ) ( ( u ( +g ` K ) v ) e. ( Base ` K ) /\ A. w e. ( Base ` K ) ( ( u ( +g ` K ) v ) ( +g ` K ) w ) = ( u ( +g ` K ) ( v ( +g ` K ) w ) ) ) ) ) : No typesetting found for |- ( ph -> ( K e. Smgrp <-> A. u e. ( Base ` K ) A. v e. ( Base ` K ) ( ( u ( +g ` K ) v ) e. ( Base ` K ) /\ A. w e. ( Base ` K ) ( ( u ( +g ` K ) v ) ( +g ` K ) w ) = ( u ( +g ` K ) ( v ( +g ` K ) w ) ) ) ) ) with typecode |-
35 34 adantr Could not format ( ( ph /\ A. x e. B A. y e. B ( x ( +g ` K ) y ) e. B ) -> ( K e. Smgrp <-> A. u e. ( Base ` K ) A. v e. ( Base ` K ) ( ( u ( +g ` K ) v ) e. ( Base ` K ) /\ A. w e. ( Base ` K ) ( ( u ( +g ` K ) v ) ( +g ` K ) w ) = ( u ( +g ` K ) ( v ( +g ` K ) w ) ) ) ) ) : No typesetting found for |- ( ( ph /\ A. x e. B A. y e. B ( x ( +g ` K ) y ) e. B ) -> ( K e. Smgrp <-> A. u e. ( Base ` K ) A. v e. ( Base ` K ) ( ( u ( +g ` K ) v ) e. ( Base ` K ) /\ A. w e. ( Base ` K ) ( ( u ( +g ` K ) v ) ( +g ` K ) w ) = ( u ( +g ` K ) ( v ( +g ` K ) w ) ) ) ) ) with typecode |-
36 5 oveqrspc2v φ u B v B u + K v = u + L v
37 36 adantlr φ x B y B x + K y B u B v B u + K v = u + L v
38 37 eleq1d φ x B y B x + K y B u B v B u + K v B u + L v B
39 simplll φ x B y B x + K y B u B v B w B φ
40 simplrl φ x B y B x + K y B u B v B w B u B
41 simplrr φ x B y B x + K y B u B v B w B v B
42 simpllr φ x B y B x + K y B u B v B w B x B y B x + K y B
43 ovrspc2v u B v B x B y B x + K y B u + K v B
44 40 41 42 43 syl21anc φ x B y B x + K y B u B v B w B u + K v B
45 simpr φ x B y B x + K y B u B v B w B w B
46 5 oveqrspc2v φ u + K v B w B u + K v + K w = u + K v + L w
47 39 44 45 46 syl12anc φ x B y B x + K y B u B v B w B u + K v + K w = u + K v + L w
48 39 40 41 36 syl12anc φ x B y B x + K y B u B v B w B u + K v = u + L v
49 48 oveq1d φ x B y B x + K y B u B v B w B u + K v + L w = u + L v + L w
50 47 49 eqtrd φ x B y B x + K y B u B v B w B u + K v + K w = u + L v + L w
51 ovrspc2v v B w B x B y B x + K y B v + K w B
52 41 45 42 51 syl21anc φ x B y B x + K y B u B v B w B v + K w B
53 5 oveqrspc2v φ u B v + K w B u + K v + K w = u + L v + K w
54 39 40 52 53 syl12anc φ x B y B x + K y B u B v B w B u + K v + K w = u + L v + K w
55 5 oveqrspc2v φ v B w B v + K w = v + L w
56 39 41 45 55 syl12anc φ x B y B x + K y B u B v B w B v + K w = v + L w
57 56 oveq2d φ x B y B x + K y B u B v B w B u + L v + K w = u + L v + L w
58 54 57 eqtrd φ x B y B x + K y B u B v B w B u + K v + K w = u + L v + L w
59 50 58 eqeq12d φ x B y B x + K y B u B v B w B u + K v + K w = u + K v + K w u + L v + L w = u + L v + L w
60 59 ralbidva φ x B y B x + K y B u B v B w B u + K v + K w = u + K v + K w w B u + L v + L w = u + L v + L w
61 38 60 anbi12d φ x B y B x + K y B u B v B u + K v B w B u + K v + K w = u + K v + K w u + L v B w B u + L v + L w = u + L v + L w
62 61 2ralbidva φ x B y B x + K y B u B v B u + K v B w B u + K v + K w = u + K v + K w u B v B u + L v B w B u + L v + L w = u + L v + L w
63 3 adantr φ x B y B x + K y B B = Base K
64 63 eleq2d φ x B y B x + K y B u + K v B u + K v Base K
65 63 raleqdv φ x B y B x + K y B w B u + K v + K w = u + K v + K w w Base K u + K v + K w = u + K v + K w
66 64 65 anbi12d φ x B y B x + K y B u + K v B w B u + K v + K w = u + K v + K w u + K v Base K w Base K u + K v + K w = u + K v + K w
67 63 66 raleqbidv φ x B y B x + K y B v B u + K v B w B u + K v + K w = u + K v + K w v Base K u + K v Base K w Base K u + K v + K w = u + K v + K w
68 63 67 raleqbidv φ x B y B x + K y B u B v B u + K v B w B u + K v + K w = u + K v + K w u Base K v Base K u + K v Base K w Base K u + K v + K w = u + K v + K w
69 4 adantr φ x B y B x + K y B B = Base L
70 69 eleq2d φ x B y B x + K y B u + L v B u + L v Base L
71 69 raleqdv φ x B y B x + K y B w B u + L v + L w = u + L v + L w w Base L u + L v + L w = u + L v + L w
72 70 71 anbi12d φ x B y B x + K y B u + L v B w B u + L v + L w = u + L v + L w u + L v Base L w Base L u + L v + L w = u + L v + L w
73 69 72 raleqbidv φ x B y B x + K y B v B u + L v B w B u + L v + L w = u + L v + L w v Base L u + L v Base L w Base L u + L v + L w = u + L v + L w
74 69 73 raleqbidv φ x B y B x + K y B u B v B u + L v B w B u + L v + L w = u + L v + L w u Base L v Base L u + L v Base L w Base L u + L v + L w = u + L v + L w
75 62 68 74 3bitr3d φ x B y B x + K y B u Base K v Base K u + K v Base K w Base K u + K v + K w = u + K v + K w u Base L v Base L u + L v Base L w Base L u + L v + L w = u + L v + L w
76 25 26 issgrpv Could not format ( L e. W -> ( L e. Smgrp <-> A. u e. ( Base ` L ) A. v e. ( Base ` L ) ( ( u ( +g ` L ) v ) e. ( Base ` L ) /\ A. w e. ( Base ` L ) ( ( u ( +g ` L ) v ) ( +g ` L ) w ) = ( u ( +g ` L ) ( v ( +g ` L ) w ) ) ) ) ) : No typesetting found for |- ( L e. W -> ( L e. Smgrp <-> A. u e. ( Base ` L ) A. v e. ( Base ` L ) ( ( u ( +g ` L ) v ) e. ( Base ` L ) /\ A. w e. ( Base ` L ) ( ( u ( +g ` L ) v ) ( +g ` L ) w ) = ( u ( +g ` L ) ( v ( +g ` L ) w ) ) ) ) ) with typecode |-
77 2 76 syl Could not format ( ph -> ( L e. Smgrp <-> A. u e. ( Base ` L ) A. v e. ( Base ` L ) ( ( u ( +g ` L ) v ) e. ( Base ` L ) /\ A. w e. ( Base ` L ) ( ( u ( +g ` L ) v ) ( +g ` L ) w ) = ( u ( +g ` L ) ( v ( +g ` L ) w ) ) ) ) ) : No typesetting found for |- ( ph -> ( L e. Smgrp <-> A. u e. ( Base ` L ) A. v e. ( Base ` L ) ( ( u ( +g ` L ) v ) e. ( Base ` L ) /\ A. w e. ( Base ` L ) ( ( u ( +g ` L ) v ) ( +g ` L ) w ) = ( u ( +g ` L ) ( v ( +g ` L ) w ) ) ) ) ) with typecode |-
78 77 bicomd Could not format ( ph -> ( A. u e. ( Base ` L ) A. v e. ( Base ` L ) ( ( u ( +g ` L ) v ) e. ( Base ` L ) /\ A. w e. ( Base ` L ) ( ( u ( +g ` L ) v ) ( +g ` L ) w ) = ( u ( +g ` L ) ( v ( +g ` L ) w ) ) ) <-> L e. Smgrp ) ) : No typesetting found for |- ( ph -> ( A. u e. ( Base ` L ) A. v e. ( Base ` L ) ( ( u ( +g ` L ) v ) e. ( Base ` L ) /\ A. w e. ( Base ` L ) ( ( u ( +g ` L ) v ) ( +g ` L ) w ) = ( u ( +g ` L ) ( v ( +g ` L ) w ) ) ) <-> L e. Smgrp ) ) with typecode |-
79 78 adantr Could not format ( ( ph /\ A. x e. B A. y e. B ( x ( +g ` K ) y ) e. B ) -> ( A. u e. ( Base ` L ) A. v e. ( Base ` L ) ( ( u ( +g ` L ) v ) e. ( Base ` L ) /\ A. w e. ( Base ` L ) ( ( u ( +g ` L ) v ) ( +g ` L ) w ) = ( u ( +g ` L ) ( v ( +g ` L ) w ) ) ) <-> L e. Smgrp ) ) : No typesetting found for |- ( ( ph /\ A. x e. B A. y e. B ( x ( +g ` K ) y ) e. B ) -> ( A. u e. ( Base ` L ) A. v e. ( Base ` L ) ( ( u ( +g ` L ) v ) e. ( Base ` L ) /\ A. w e. ( Base ` L ) ( ( u ( +g ` L ) v ) ( +g ` L ) w ) = ( u ( +g ` L ) ( v ( +g ` L ) w ) ) ) <-> L e. Smgrp ) ) with typecode |-
80 35 75 79 3bitrd Could not format ( ( ph /\ A. x e. B A. y e. B ( x ( +g ` K ) y ) e. B ) -> ( K e. Smgrp <-> L e. Smgrp ) ) : No typesetting found for |- ( ( ph /\ A. x e. B A. y e. B ( x ( +g ` K ) y ) e. B ) -> ( K e. Smgrp <-> L e. Smgrp ) ) with typecode |-
81 80 ex Could not format ( ph -> ( A. x e. B A. y e. B ( x ( +g ` K ) y ) e. B -> ( K e. Smgrp <-> L e. Smgrp ) ) ) : No typesetting found for |- ( ph -> ( A. x e. B A. y e. B ( x ( +g ` K ) y ) e. B -> ( K e. Smgrp <-> L e. Smgrp ) ) ) with typecode |-
82 18 32 81 pm5.21ndd Could not format ( ph -> ( K e. Smgrp <-> L e. Smgrp ) ) : No typesetting found for |- ( ph -> ( K e. Smgrp <-> L e. Smgrp ) ) with typecode |-