Metamath Proof Explorer


Theorem sgsummulcl

Description: A finite semiring sum multiplied by a constant, analogous to gsummulc2 . (Contributed by AV, 23-Aug-2019)

Ref Expression
Hypotheses srgsummulcr.b B = Base R
srgsummulcr.z 0 ˙ = 0 R
srgsummulcr.p + ˙ = + R
srgsummulcr.t · ˙ = R
srgsummulcr.r φ R SRing
srgsummulcr.a φ A V
srgsummulcr.y φ Y B
srgsummulcr.x φ k A X B
srgsummulcr.n φ finSupp 0 ˙ k A X
Assertion sgsummulcl φ R k A Y · ˙ X = Y · ˙ R k A X

Proof

Step Hyp Ref Expression
1 srgsummulcr.b B = Base R
2 srgsummulcr.z 0 ˙ = 0 R
3 srgsummulcr.p + ˙ = + R
4 srgsummulcr.t · ˙ = R
5 srgsummulcr.r φ R SRing
6 srgsummulcr.a φ A V
7 srgsummulcr.y φ Y B
8 srgsummulcr.x φ k A X B
9 srgsummulcr.n φ finSupp 0 ˙ k A X
10 srgcmn R SRing R CMnd
11 5 10 syl φ R CMnd
12 srgmnd R SRing R Mnd
13 5 12 syl φ R Mnd
14 1 4 srglmhm R SRing Y B x B Y · ˙ x R MndHom R
15 5 7 14 syl2anc φ x B Y · ˙ x R MndHom R
16 oveq2 x = X Y · ˙ x = Y · ˙ X
17 oveq2 x = R k A X Y · ˙ x = Y · ˙ R k A X
18 1 2 11 13 6 15 8 9 16 17 gsummhm2 φ R k A Y · ˙ X = Y · ˙ R k A X