Metamath Proof Explorer


Theorem shaddcl

Description: Closure of vector addition in a subspace of a Hilbert space. (Contributed by NM, 13-Sep-1999) (New usage is discouraged.)

Ref Expression
Assertion shaddcl H S A H B H A + B H

Proof

Step Hyp Ref Expression
1 issh2 H S H 0 H x H y H x + y H x y H x y H
2 1 simprbi H S x H y H x + y H x y H x y H
3 2 simpld H S x H y H x + y H
4 oveq1 x = A x + y = A + y
5 4 eleq1d x = A x + y H A + y H
6 oveq2 y = B A + y = A + B
7 6 eleq1d y = B A + y H A + B H
8 5 7 rspc2v A H B H x H y H x + y H A + B H
9 3 8 syl5com H S A H B H A + B H
10 9 3impib H S A H B H A + B H