Metamath Proof Explorer


Theorem shaddcl

Description: Closure of vector addition in a subspace of a Hilbert space. (Contributed by NM, 13-Sep-1999) (New usage is discouraged.)

Ref Expression
Assertion shaddcl HSAHBHA+BH

Proof

Step Hyp Ref Expression
1 issh2 HSH0HxHyHx+yHxyHxyH
2 1 simprbi HSxHyHx+yHxyHxyH
3 2 simpld HSxHyHx+yH
4 oveq1 x=Ax+y=A+y
5 4 eleq1d x=Ax+yHA+yH
6 oveq2 y=BA+y=A+B
7 6 eleq1d y=BA+yHA+BH
8 5 7 rspc2v AHBHxHyHx+yHA+BH
9 3 8 syl5com HSAHBHA+BH
10 9 3impib HSAHBHA+BH