Metamath Proof Explorer


Theorem sharhght

Description: Let A B C be a triangle, and let D lie on the line A B . Then (doubled) areas of triangles A D C and C D B relate as lengths of corresponding bases A D and D B . (Contributed by Saveliy Skresanov, 23-Sep-2017)

Ref Expression
Hypotheses sharhght.sigar G = x , y x y
sharhght.a φ A B C
sharhght.b φ D A D G B D = 0
Assertion sharhght φ C A G D A B D = C B G D B A D

Proof

Step Hyp Ref Expression
1 sharhght.sigar G = x , y x y
2 sharhght.a φ A B C
3 sharhght.b φ D A D G B D = 0
4 2 simp3d φ C
5 2 simp1d φ A
6 4 5 subcld φ C A
7 6 adantr φ B = D C A
8 3 simpld φ D
9 8 5 subcld φ D A
10 9 adantr φ B = D D A
11 1 sigarim C A D A C A G D A
12 7 10 11 syl2anc φ B = D C A G D A
13 12 recnd φ B = D C A G D A
14 13 mul01d φ B = D C A G D A 0 = 0
15 2 simp2d φ B
16 15 adantr φ B = D B
17 simpr φ B = D B = D
18 16 17 subeq0bd φ B = D B D = 0
19 18 oveq2d φ B = D C A G D A B D = C A G D A 0
20 4 15 subcld φ C B
21 20 adantr φ B = D C B
22 8 15 subcld φ D B
23 22 adantr φ B = D D B
24 1 sigarval C B D B C B G D B = C B D B
25 21 23 24 syl2anc φ B = D C B G D B = C B D B
26 8 adantr φ B = D D
27 17 eqcomd φ B = D D = B
28 26 27 subeq0bd φ B = D D B = 0
29 28 oveq2d φ B = D C B D B = C B 0
30 21 cjcld φ B = D C B
31 30 mul01d φ B = D C B 0 = 0
32 29 31 eqtrd φ B = D C B D B = 0
33 32 fveq2d φ B = D C B D B = 0
34 0red φ B = D 0
35 34 reim0d φ B = D 0 = 0
36 25 33 35 3eqtrd φ B = D C B G D B = 0
37 36 oveq1d φ B = D C B G D B A D = 0 A D
38 5 adantr φ B = D A
39 38 26 subcld φ B = D A D
40 39 mul02d φ B = D 0 A D = 0
41 37 40 eqtrd φ B = D C B G D B A D = 0
42 14 19 41 3eqtr4d φ B = D C A G D A B D = C B G D B A D
43 4 adantr φ ¬ B = D C
44 15 adantr φ ¬ B = D B
45 5 adantr φ ¬ B = D A
46 43 44 45 npncand φ ¬ B = D C B + B - A = C A
47 46 oveq1d φ ¬ B = D C B + B - A G D A = C A G D A
48 43 44 subcld φ ¬ B = D C B
49 9 adantr φ ¬ B = D D A
50 44 45 subcld φ ¬ B = D B A
51 1 sigaraf C B D A B A C B + B - A G D A = C B G D A + B A G D A
52 48 49 50 51 syl3anc φ ¬ B = D C B + B - A G D A = C B G D A + B A G D A
53 47 52 eqtr3d φ ¬ B = D C A G D A = C B G D A + B A G D A
54 3 simprd φ A D G B D = 0
55 54 adantr φ ¬ B = D A D G B D = 0
56 8 adantr φ ¬ B = D D
57 1 sigarperm A B D A D G B D = B A G D A
58 45 44 56 57 syl3anc φ ¬ B = D A D G B D = B A G D A
59 55 58 eqtr3d φ ¬ B = D 0 = B A G D A
60 59 oveq2d φ ¬ B = D C B G D A + 0 = C B G D A + B A G D A
61 1 sigarim C B D A C B G D A
62 48 49 61 syl2anc φ ¬ B = D C B G D A
63 62 recnd φ ¬ B = D C B G D A
64 63 addid1d φ ¬ B = D C B G D A + 0 = C B G D A
65 53 60 64 3eqtr2d φ ¬ B = D C A G D A = C B G D A
66 44 56 negsubdi2d φ ¬ B = D B D = D B
67 66 eqcomd φ ¬ B = D D B = B D
68 67 oveq1d φ ¬ B = D D B B D = B D B D
69 44 56 subcld φ ¬ B = D B D
70 simpr φ ¬ B = D ¬ B = D
71 70 neqned φ ¬ B = D B D
72 44 56 71 subne0d φ ¬ B = D B D 0
73 69 69 72 divnegd φ ¬ B = D B D B D = B D B D
74 69 72 dividd φ ¬ B = D B D B D = 1
75 74 negeqd φ ¬ B = D B D B D = 1
76 68 73 75 3eqtr2d φ ¬ B = D D B B D = 1
77 76 oveq1d φ ¬ B = D D B B D A D = -1 A D
78 45 56 subcld φ ¬ B = D A D
79 78 mulm1d φ ¬ B = D -1 A D = A D
80 45 56 negsubdi2d φ ¬ B = D A D = D A
81 77 79 80 3eqtrd φ ¬ B = D D B B D A D = D A
82 56 44 subcld φ ¬ B = D D B
83 82 69 78 72 div32d φ ¬ B = D D B B D A D = D B A D B D
84 81 83 eqtr3d φ ¬ B = D D A = D B A D B D
85 84 oveq2d φ ¬ B = D C B G D A = C B G D B A D B D
86 56 45 44 3jca φ ¬ B = D D A B
87 1 86 70 55 sigardiv φ ¬ B = D A D B D
88 1 sigarls C B D B A D B D C B G D B A D B D = C B G D B A D B D
89 48 82 87 88 syl3anc φ ¬ B = D C B G D B A D B D = C B G D B A D B D
90 65 85 89 3eqtrd φ ¬ B = D C A G D A = C B G D B A D B D
91 90 oveq1d φ ¬ B = D C A G D A B D = C B G D B A D B D B D
92 1 sigarim C B D B C B G D B
93 92 recnd C B D B C B G D B
94 48 82 93 syl2anc φ ¬ B = D C B G D B
95 78 69 72 divcld φ ¬ B = D A D B D
96 94 95 69 mulassd φ ¬ B = D C B G D B A D B D B D = C B G D B A D B D B D
97 78 69 72 divcan1d φ ¬ B = D A D B D B D = A D
98 97 oveq2d φ ¬ B = D C B G D B A D B D B D = C B G D B A D
99 91 96 98 3eqtrd φ ¬ B = D C A G D A B D = C B G D B A D
100 42 99 pm2.61dan φ C A G D A B D = C B G D B A D