Step |
Hyp |
Ref |
Expression |
1 |
|
sharhght.sigar |
|
2 |
|
sharhght.a |
|
3 |
|
sharhght.b |
|
4 |
2
|
simp3d |
|
5 |
2
|
simp1d |
|
6 |
4 5
|
subcld |
|
7 |
6
|
adantr |
|
8 |
3
|
simpld |
|
9 |
8 5
|
subcld |
|
10 |
9
|
adantr |
|
11 |
1
|
sigarim |
|
12 |
7 10 11
|
syl2anc |
|
13 |
12
|
recnd |
|
14 |
13
|
mul01d |
|
15 |
2
|
simp2d |
|
16 |
15
|
adantr |
|
17 |
|
simpr |
|
18 |
16 17
|
subeq0bd |
|
19 |
18
|
oveq2d |
|
20 |
4 15
|
subcld |
|
21 |
20
|
adantr |
|
22 |
8 15
|
subcld |
|
23 |
22
|
adantr |
|
24 |
1
|
sigarval |
|
25 |
21 23 24
|
syl2anc |
|
26 |
8
|
adantr |
|
27 |
17
|
eqcomd |
|
28 |
26 27
|
subeq0bd |
|
29 |
28
|
oveq2d |
|
30 |
21
|
cjcld |
|
31 |
30
|
mul01d |
|
32 |
29 31
|
eqtrd |
|
33 |
32
|
fveq2d |
|
34 |
|
0red |
|
35 |
34
|
reim0d |
|
36 |
25 33 35
|
3eqtrd |
|
37 |
36
|
oveq1d |
|
38 |
5
|
adantr |
|
39 |
38 26
|
subcld |
|
40 |
39
|
mul02d |
|
41 |
37 40
|
eqtrd |
|
42 |
14 19 41
|
3eqtr4d |
|
43 |
4
|
adantr |
|
44 |
15
|
adantr |
|
45 |
5
|
adantr |
|
46 |
43 44 45
|
npncand |
|
47 |
46
|
oveq1d |
|
48 |
43 44
|
subcld |
|
49 |
9
|
adantr |
|
50 |
44 45
|
subcld |
|
51 |
1
|
sigaraf |
|
52 |
48 49 50 51
|
syl3anc |
|
53 |
47 52
|
eqtr3d |
|
54 |
3
|
simprd |
|
55 |
54
|
adantr |
|
56 |
8
|
adantr |
|
57 |
1
|
sigarperm |
|
58 |
45 44 56 57
|
syl3anc |
|
59 |
55 58
|
eqtr3d |
|
60 |
59
|
oveq2d |
|
61 |
1
|
sigarim |
|
62 |
48 49 61
|
syl2anc |
|
63 |
62
|
recnd |
|
64 |
63
|
addid1d |
|
65 |
53 60 64
|
3eqtr2d |
|
66 |
44 56
|
negsubdi2d |
|
67 |
66
|
eqcomd |
|
68 |
67
|
oveq1d |
|
69 |
44 56
|
subcld |
|
70 |
|
simpr |
|
71 |
70
|
neqned |
|
72 |
44 56 71
|
subne0d |
|
73 |
69 69 72
|
divnegd |
|
74 |
69 72
|
dividd |
|
75 |
74
|
negeqd |
|
76 |
68 73 75
|
3eqtr2d |
|
77 |
76
|
oveq1d |
|
78 |
45 56
|
subcld |
|
79 |
78
|
mulm1d |
|
80 |
45 56
|
negsubdi2d |
|
81 |
77 79 80
|
3eqtrd |
|
82 |
56 44
|
subcld |
|
83 |
82 69 78 72
|
div32d |
|
84 |
81 83
|
eqtr3d |
|
85 |
84
|
oveq2d |
|
86 |
56 45 44
|
3jca |
|
87 |
1 86 70 55
|
sigardiv |
|
88 |
1
|
sigarls |
|
89 |
48 82 87 88
|
syl3anc |
|
90 |
65 85 89
|
3eqtrd |
|
91 |
90
|
oveq1d |
|
92 |
1
|
sigarim |
|
93 |
92
|
recnd |
|
94 |
48 82 93
|
syl2anc |
|
95 |
78 69 72
|
divcld |
|
96 |
94 95 69
|
mulassd |
|
97 |
78 69 72
|
divcan1d |
|
98 |
97
|
oveq2d |
|
99 |
91 96 98
|
3eqtrd |
|
100 |
42 99
|
pm2.61dan |
|