Metamath Proof Explorer


Theorem shatomistici

Description: The lattice of Hilbert subspaces is atomistic, i.e. any element is the supremum of its atoms. Part of proof of Theorem 16.9 of MaedaMaeda p. 70. (Contributed by NM, 26-Nov-2004) (New usage is discouraged.)

Ref Expression
Hypothesis shatomistic.1 A S
Assertion shatomistici A = span x HAtoms | x A

Proof

Step Hyp Ref Expression
1 shatomistic.1 A S
2 eleq1 y = 0 y span x HAtoms | x A 0 span x HAtoms | x A
3 1 sheli y A y
4 spansnsh y span y S
5 spanid span y S span span y = span y
6 3 4 5 3syl y A span span y = span y
7 6 adantr y A y 0 span span y = span y
8 spansna y y 0 span y HAtoms
9 3 8 sylan y A y 0 span y HAtoms
10 spansnss A S y A span y A
11 1 10 mpan y A span y A
12 11 adantr y A y 0 span y A
13 sseq1 x = span y x A span y A
14 13 elrab span y x HAtoms | x A span y HAtoms span y A
15 9 12 14 sylanbrc y A y 0 span y x HAtoms | x A
16 elssuni span y x HAtoms | x A span y x HAtoms | x A
17 atssch HAtoms C
18 chsssh C S
19 17 18 sstri HAtoms S
20 rabss2 HAtoms S x HAtoms | x A x S | x A
21 uniss x HAtoms | x A x S | x A x HAtoms | x A x S | x A
22 19 20 21 mp2b x HAtoms | x A x S | x A
23 unimax A S x S | x A = A
24 1 23 ax-mp x S | x A = A
25 1 shssii A
26 24 25 eqsstri x S | x A
27 22 26 sstri x HAtoms | x A
28 spanss x HAtoms | x A span y x HAtoms | x A span span y span x HAtoms | x A
29 27 28 mpan span y x HAtoms | x A span span y span x HAtoms | x A
30 15 16 29 3syl y A y 0 span span y span x HAtoms | x A
31 7 30 eqsstrrd y A y 0 span y span x HAtoms | x A
32 spansnid y y span y
33 3 32 syl y A y span y
34 33 adantr y A y 0 y span y
35 31 34 sseldd y A y 0 y span x HAtoms | x A
36 spancl x HAtoms | x A span x HAtoms | x A S
37 sh0 span x HAtoms | x A S 0 span x HAtoms | x A
38 27 36 37 mp2b 0 span x HAtoms | x A
39 38 a1i y A 0 span x HAtoms | x A
40 2 35 39 pm2.61ne y A y span x HAtoms | x A
41 40 ssriv A span x HAtoms | x A
42 spanss x S | x A x HAtoms | x A x S | x A span x HAtoms | x A span x S | x A
43 26 22 42 mp2an span x HAtoms | x A span x S | x A
44 24 fveq2i span x S | x A = span A
45 spanid A S span A = A
46 1 45 ax-mp span A = A
47 44 46 eqtri span x S | x A = A
48 43 47 sseqtri span x HAtoms | x A A
49 41 48 eqssi A = span x HAtoms | x A