Metamath Proof Explorer


Theorem shftcan1

Description: Cancellation law for the shift operation. (Contributed by NM, 4-Aug-2005) (Revised by Mario Carneiro, 5-Nov-2013)

Ref Expression
Hypothesis shftfval.1 F V
Assertion shftcan1 A B F shift A shift A B = F B

Proof

Step Hyp Ref Expression
1 shftfval.1 F V
2 negcl A A
3 1 2shfti A A F shift A shift A = F shift A + A
4 2 3 mpdan A F shift A shift A = F shift A + A
5 negid A A + A = 0
6 5 oveq2d A F shift A + A = F shift 0
7 4 6 eqtrd A F shift A shift A = F shift 0
8 7 fveq1d A F shift A shift A B = F shift 0 B
9 1 shftidt B F shift 0 B = F B
10 8 9 sylan9eq A B F shift A shift A B = F B