Metamath Proof Explorer


Theorem shftcan2

Description: Cancellation law for the shift operation. (Contributed by NM, 4-Aug-2005) (Revised by Mario Carneiro, 5-Nov-2013)

Ref Expression
Hypothesis shftfval.1 F V
Assertion shftcan2 A B F shift A shift A B = F B

Proof

Step Hyp Ref Expression
1 shftfval.1 F V
2 negneg A A = A
3 2 adantr A B A = A
4 3 oveq2d A B F shift A shift A = F shift A shift A
5 4 fveq1d A B F shift A shift A B = F shift A shift A B
6 negcl A A
7 1 shftcan1 A B F shift A shift A B = F B
8 6 7 sylan A B F shift A shift A B = F B
9 5 8 eqtr3d A B F shift A shift A B = F B