Metamath Proof Explorer


Theorem shftfval

Description: The value of the sequence shifter operation is a function on CC . A is ordinarily an integer. (Contributed by NM, 20-Jul-2005) (Revised by Mario Carneiro, 3-Nov-2013)

Ref Expression
Hypothesis shftfval.1 F V
Assertion shftfval A F shift A = x y | x x A F y

Proof

Step Hyp Ref Expression
1 shftfval.1 F V
2 ovex x A V
3 vex y V
4 2 3 breldm x A F y x A dom F
5 npcan x A x - A + A = x
6 5 eqcomd x A x = x - A + A
7 6 ancoms A x x = x - A + A
8 oveq1 w = x A w + A = x - A + A
9 8 rspceeqv x A dom F x = x - A + A w dom F x = w + A
10 4 7 9 syl2anr A x x A F y w dom F x = w + A
11 vex x V
12 eqeq1 z = x z = w + A x = w + A
13 12 rexbidv z = x w dom F z = w + A w dom F x = w + A
14 11 13 elab x z | w dom F z = w + A w dom F x = w + A
15 10 14 sylibr A x x A F y x z | w dom F z = w + A
16 2 3 brelrn x A F y y ran F
17 16 adantl A x x A F y y ran F
18 15 17 jca A x x A F y x z | w dom F z = w + A y ran F
19 18 expl A x x A F y x z | w dom F z = w + A y ran F
20 19 ssopab2dv A x y | x x A F y x y | x z | w dom F z = w + A y ran F
21 df-xp z | w dom F z = w + A × ran F = x y | x z | w dom F z = w + A y ran F
22 20 21 sseqtrrdi A x y | x x A F y z | w dom F z = w + A × ran F
23 1 dmex dom F V
24 23 abrexex z | w dom F z = w + A V
25 1 rnex ran F V
26 24 25 xpex z | w dom F z = w + A × ran F V
27 ssexg x y | x x A F y z | w dom F z = w + A × ran F z | w dom F z = w + A × ran F V x y | x x A F y V
28 22 26 27 sylancl A x y | x x A F y V
29 breq z = F x w z y x w F y
30 29 anbi2d z = F x x w z y x x w F y
31 30 opabbidv z = F x y | x x w z y = x y | x x w F y
32 oveq2 w = A x w = x A
33 32 breq1d w = A x w F y x A F y
34 33 anbi2d w = A x x w F y x x A F y
35 34 opabbidv w = A x y | x x w F y = x y | x x A F y
36 df-shft shift = z V , w x y | x x w z y
37 31 35 36 ovmpog F V A x y | x x A F y V F shift A = x y | x x A F y
38 1 37 mp3an1 A x y | x x A F y V F shift A = x y | x x A F y
39 28 38 mpdan A F shift A = x y | x x A F y