Metamath Proof Explorer


Theorem shftidt

Description: Identity law for the shift operation. (Contributed by NM, 19-Aug-2005) (Revised by Mario Carneiro, 5-Nov-2013)

Ref Expression
Hypothesis shftfval.1 F V
Assertion shftidt A F shift 0 A = F A

Proof

Step Hyp Ref Expression
1 shftfval.1 F V
2 1 shftidt2 F shift 0 = F
3 2 fveq1i F shift 0 A = F A
4 fvres A F A = F A
5 3 4 eqtrid A F shift 0 A = F A