Database
REAL AND COMPLEX NUMBERS
Elementary real and complex functions
The "shift" operation
shftidt2
Next ⟩
shftidt
Metamath Proof Explorer
Ascii
Unicode
Theorem
shftidt2
Description:
Identity law for the shift operation.
(Contributed by
Mario Carneiro
, 5-Nov-2013)
Ref
Expression
Hypothesis
shftfval.1
⊢
F
∈
V
Assertion
shftidt2
⊢
F
shift
0
=
F
↾
ℂ
Proof
Step
Hyp
Ref
Expression
1
shftfval.1
⊢
F
∈
V
2
subid1
⊢
x
∈
ℂ
→
x
−
0
=
x
3
2
breq1d
⊢
x
∈
ℂ
→
x
−
0
F
y
↔
x
F
y
4
3
pm5.32i
⊢
x
∈
ℂ
∧
x
−
0
F
y
↔
x
∈
ℂ
∧
x
F
y
5
4
opabbii
⊢
x
y
|
x
∈
ℂ
∧
x
−
0
F
y
=
x
y
|
x
∈
ℂ
∧
x
F
y
6
0cn
⊢
0
∈
ℂ
7
1
shftfval
⊢
0
∈
ℂ
→
F
shift
0
=
x
y
|
x
∈
ℂ
∧
x
−
0
F
y
8
6
7
ax-mp
⊢
F
shift
0
=
x
y
|
x
∈
ℂ
∧
x
−
0
F
y
9
dfres2
⊢
F
↾
ℂ
=
x
y
|
x
∈
ℂ
∧
x
F
y
10
5
8
9
3eqtr4i
⊢
F
shift
0
=
F
↾
ℂ