Metamath Proof Explorer


Theorem shftidt2

Description: Identity law for the shift operation. (Contributed by Mario Carneiro, 5-Nov-2013)

Ref Expression
Hypothesis shftfval.1 F V
Assertion shftidt2 F shift 0 = F

Proof

Step Hyp Ref Expression
1 shftfval.1 F V
2 subid1 x x 0 = x
3 2 breq1d x x 0 F y x F y
4 3 pm5.32i x x 0 F y x x F y
5 4 opabbii x y | x x 0 F y = x y | x x F y
6 0cn 0
7 1 shftfval 0 F shift 0 = x y | x x 0 F y
8 6 7 ax-mp F shift 0 = x y | x x 0 F y
9 dfres2 F = x y | x x F y
10 5 8 9 3eqtr4i F shift 0 = F