Metamath Proof Explorer


Theorem shftuz

Description: A shift of the upper integers. (Contributed by Mario Carneiro, 5-Nov-2013)

Ref Expression
Assertion shftuz A B x | x A B = B + A

Proof

Step Hyp Ref Expression
1 df-rab x | x A B = x | x x A B
2 simp2 A x x A B x
3 zcn A A
4 3 3ad2ant1 A x x A B A
5 2 4 npcand A x x A B x - A + A = x
6 eluzadd x A B A x - A + A B + A
7 6 ancoms A x A B x - A + A B + A
8 7 3adant2 A x x A B x - A + A B + A
9 5 8 eqeltrrd A x x A B x B + A
10 9 3expib A x x A B x B + A
11 10 adantr A B x x A B x B + A
12 eluzelcn x B + A x
13 12 a1i A B x B + A x
14 eluzsub B A x B + A x A B
15 14 3expia B A x B + A x A B
16 15 ancoms A B x B + A x A B
17 13 16 jcad A B x B + A x x A B
18 11 17 impbid A B x x A B x B + A
19 18 abbi1dv A B x | x x A B = B + A
20 1 19 eqtrid A B x | x A B = B + A