Metamath Proof Explorer


Theorem shftval

Description: Value of a sequence shifted by A . (Contributed by NM, 20-Jul-2005) (Revised by Mario Carneiro, 4-Nov-2013)

Ref Expression
Hypothesis shftfval.1 F V
Assertion shftval A B F shift A B = F B A

Proof

Step Hyp Ref Expression
1 shftfval.1 F V
2 1 shftfib A B F shift A B = F B A
3 2 eleq2d A B x F shift A B x F B A
4 3 iotabidv A B ι x | x F shift A B = ι x | x F B A
5 dffv3 F shift A B = ι x | x F shift A B
6 dffv3 F B A = ι x | x F B A
7 4 5 6 3eqtr4g A B F shift A B = F B A