Metamath Proof Explorer


Theorem shftval2

Description: Value of a sequence shifted by A - B . (Contributed by NM, 20-Jul-2005) (Revised by Mario Carneiro, 5-Nov-2013)

Ref Expression
Hypothesis shftfval.1 F V
Assertion shftval2 A B C F shift A B A + C = F B + C

Proof

Step Hyp Ref Expression
1 shftfval.1 F V
2 subcl A B A B
3 2 3adant3 A B C A B
4 addcl A C A + C
5 1 shftval A B A + C F shift A B A + C = F A + C - A B
6 3 4 5 3imp3i2an A B C F shift A B A + C = F A + C - A B
7 pnncan A C B A + C - A B = C + B
8 7 3com23 A B C A + C - A B = C + B
9 addcom B C B + C = C + B
10 9 3adant1 A B C B + C = C + B
11 8 10 eqtr4d A B C A + C - A B = B + C
12 11 fveq2d A B C F A + C - A B = F B + C
13 6 12 eqtrd A B C F shift A B A + C = F B + C