Metamath Proof Explorer


Theorem shftval3

Description: Value of a sequence shifted by A - B . (Contributed by NM, 20-Jul-2005)

Ref Expression
Hypothesis shftfval.1 F V
Assertion shftval3 A B F shift A B A = F B

Proof

Step Hyp Ref Expression
1 shftfval.1 F V
2 0cn 0
3 1 shftval2 A B 0 F shift A B A + 0 = F B + 0
4 2 3 mp3an3 A B F shift A B A + 0 = F B + 0
5 addid1 A A + 0 = A
6 5 adantr A B A + 0 = A
7 6 fveq2d A B F shift A B A + 0 = F shift A B A
8 addid1 B B + 0 = B
9 8 adantl A B B + 0 = B
10 9 fveq2d A B F B + 0 = F B
11 4 7 10 3eqtr3d A B F shift A B A = F B