Database
REAL AND COMPLEX NUMBERS
Elementary real and complex functions
The "shift" operation
shftval3
Next ⟩
shftval4
Metamath Proof Explorer
Ascii
Unicode
Theorem
shftval3
Description:
Value of a sequence shifted by
A - B
.
(Contributed by
NM
, 20-Jul-2005)
Ref
Expression
Hypothesis
shftfval.1
⊢
F
∈
V
Assertion
shftval3
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
F
shift
A
−
B
⁡
A
=
F
⁡
B
Proof
Step
Hyp
Ref
Expression
1
shftfval.1
⊢
F
∈
V
2
0cn
⊢
0
∈
ℂ
3
1
shftval2
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
0
∈
ℂ
→
F
shift
A
−
B
⁡
A
+
0
=
F
⁡
B
+
0
4
2
3
mp3an3
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
F
shift
A
−
B
⁡
A
+
0
=
F
⁡
B
+
0
5
addid1
⊢
A
∈
ℂ
→
A
+
0
=
A
6
5
adantr
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
+
0
=
A
7
6
fveq2d
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
F
shift
A
−
B
⁡
A
+
0
=
F
shift
A
−
B
⁡
A
8
addid1
⊢
B
∈
ℂ
→
B
+
0
=
B
9
8
adantl
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
B
+
0
=
B
10
9
fveq2d
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
F
⁡
B
+
0
=
F
⁡
B
11
4
7
10
3eqtr3d
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
F
shift
A
−
B
⁡
A
=
F
⁡
B