Metamath Proof Explorer


Theorem shftval4

Description: Value of a sequence shifted by -u A . (Contributed by NM, 18-Aug-2005) (Revised by Mario Carneiro, 5-Nov-2013)

Ref Expression
Hypothesis shftfval.1 F V
Assertion shftval4 A B F shift A B = F A + B

Proof

Step Hyp Ref Expression
1 shftfval.1 F V
2 negcl A A
3 1 shftval A B F shift A B = F B A
4 2 3 sylan A B F shift A B = F B A
5 subneg B A B A = B + A
6 5 ancoms A B B A = B + A
7 addcom A B A + B = B + A
8 6 7 eqtr4d A B B A = A + B
9 8 fveq2d A B F B A = F A + B
10 4 9 eqtrd A B F shift A B = F A + B