Metamath Proof Explorer


Theorem shftval5

Description: Value of a shifted sequence. (Contributed by NM, 19-Aug-2005) (Revised by Mario Carneiro, 5-Nov-2013)

Ref Expression
Hypothesis shftfval.1 F V
Assertion shftval5 A B F shift A B + A = F B

Proof

Step Hyp Ref Expression
1 shftfval.1 F V
2 simpr B A A
3 addcl B A B + A
4 1 shftval A B + A F shift A B + A = F B + A - A
5 2 3 4 syl2anc B A F shift A B + A = F B + A - A
6 pncan B A B + A - A = B
7 6 fveq2d B A F B + A - A = F B
8 5 7 eqtrd B A F shift A B + A = F B
9 8 ancoms A B F shift A B + A = F B